TSTP Solution File: SEU162+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU162+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:47:09 EDT 2022

% Result   : Theorem 2.92s 1.43s
% Output   : Proof 4.14s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SEU162+1 : TPTP v8.1.0. Released v3.3.0.
% 0.12/0.13  % Command  : ePrincess-casc -timeout=%d %s
% 0.13/0.34  % Computer : n006.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sun Jun 19 05:06:10 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.55/0.57          ____       _                          
% 0.55/0.57    ___  / __ \_____(_)___  ________  __________
% 0.55/0.57   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.55/0.57  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.55/0.57  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.55/0.57  
% 0.55/0.57  A Theorem Prover for First-Order Logic
% 0.55/0.57  (ePrincess v.1.0)
% 0.55/0.57  
% 0.55/0.57  (c) Philipp Rümmer, 2009-2015
% 0.55/0.57  (c) Peter Backeman, 2014-2015
% 0.55/0.57  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.55/0.57  Free software under GNU Lesser General Public License (LGPL).
% 0.55/0.57  Bug reports to peter@backeman.se
% 0.55/0.57  
% 0.55/0.57  For more information, visit http://user.uu.se/~petba168/breu/
% 0.55/0.57  
% 0.55/0.57  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.60/0.62  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.32/0.89  Prover 0: Preprocessing ...
% 1.48/1.00  Prover 0: Warning: ignoring some quantifiers
% 1.62/1.01  Prover 0: Constructing countermodel ...
% 1.83/1.16  Prover 0: gave up
% 1.83/1.16  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 2.18/1.17  Prover 1: Preprocessing ...
% 2.34/1.23  Prover 1: Constructing countermodel ...
% 2.40/1.30  Prover 1: gave up
% 2.40/1.30  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 2.40/1.32  Prover 2: Preprocessing ...
% 2.69/1.37  Prover 2: Warning: ignoring some quantifiers
% 2.69/1.37  Prover 2: Constructing countermodel ...
% 2.92/1.43  Prover 2: proved (125ms)
% 2.92/1.43  
% 2.92/1.43  No countermodel exists, formula is valid
% 2.92/1.43  % SZS status Theorem for theBenchmark
% 2.92/1.43  
% 2.92/1.43  Generating proof ... Warning: ignoring some quantifiers
% 3.82/1.65  found it (size 47)
% 3.82/1.65  
% 3.82/1.65  % SZS output start Proof for theBenchmark
% 3.82/1.65  Assumed formulas after preprocessing and simplification: 
% 3.82/1.65  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] : (set_difference(v0, v2) = v3 & singleton(v1) = v2 & in(v1, v0) = v4 &  ! [v5] :  ! [v6] :  ! [v7] :  ! [v8] : (v8 = 0 |  ~ (singleton(v5) = v7) |  ~ (disjoint(v7, v6) = v8) | in(v5, v6) = 0) &  ! [v5] :  ! [v6] :  ! [v7] :  ! [v8] : (v6 = v5 |  ~ (set_difference(v8, v7) = v6) |  ~ (set_difference(v8, v7) = v5)) &  ! [v5] :  ! [v6] :  ! [v7] :  ! [v8] : (v6 = v5 |  ~ (disjoint(v8, v7) = v6) |  ~ (disjoint(v8, v7) = v5)) &  ! [v5] :  ! [v6] :  ! [v7] :  ! [v8] : (v6 = v5 |  ~ (in(v8, v7) = v6) |  ~ (in(v8, v7) = v5)) &  ! [v5] :  ! [v6] :  ! [v7] : (v7 = v5 |  ~ (set_difference(v5, v6) = v7) |  ? [v8] : ( ~ (v8 = 0) & disjoint(v5, v6) = v8)) &  ! [v5] :  ! [v6] :  ! [v7] : (v7 = 0 |  ~ (disjoint(v6, v5) = v7) |  ? [v8] : ( ~ (v8 = 0) & disjoint(v5, v6) = v8)) &  ! [v5] :  ! [v6] :  ! [v7] : (v7 = 0 |  ~ (disjoint(v5, v6) = v7) |  ? [v8] : ( ~ (v8 = v5) & set_difference(v5, v6) = v8)) &  ! [v5] :  ! [v6] :  ! [v7] : (v7 = 0 |  ~ (in(v5, v6) = v7) |  ? [v8] : (singleton(v5) = v8 & disjoint(v8, v6) = 0)) &  ! [v5] :  ! [v6] :  ! [v7] : (v6 = v5 |  ~ (singleton(v7) = v6) |  ~ (singleton(v7) = v5)) &  ! [v5] :  ! [v6] :  ! [v7] : ( ~ (singleton(v5) = v7) |  ~ (disjoint(v7, v6) = 0) |  ? [v8] : ( ~ (v8 = 0) & in(v5, v6) = v8)) &  ! [v5] :  ! [v6] : ( ~ (set_difference(v5, v6) = v5) | disjoint(v5, v6) = 0) &  ! [v5] :  ! [v6] : ( ~ (disjoint(v5, v6) = 0) | set_difference(v5, v6) = v5) &  ! [v5] :  ! [v6] : ( ~ (disjoint(v5, v6) = 0) | disjoint(v6, v5) = 0) &  ! [v5] :  ! [v6] : ( ~ (in(v6, v5) = 0) |  ? [v7] : ( ~ (v7 = 0) & in(v5, v6) = v7)) &  ! [v5] :  ! [v6] : ( ~ (in(v5, v6) = 0) |  ? [v7] :  ? [v8] : ( ~ (v8 = 0) & singleton(v5) = v7 & disjoint(v7, v6) = v8)) &  ! [v5] :  ! [v6] : ( ~ (in(v5, v6) = 0) |  ? [v7] : ( ~ (v7 = 0) & in(v6, v5) = v7)) &  ? [v5] :  ? [v6] :  ? [v7] : set_difference(v6, v5) = v7 &  ? [v5] :  ? [v6] :  ? [v7] : disjoint(v6, v5) = v7 &  ? [v5] :  ? [v6] :  ? [v7] : in(v6, v5) = v7 &  ? [v5] :  ? [v6] : singleton(v5) = v6 & ((v4 = 0 & v3 = v0) | ( ~ (v4 = 0) &  ~ (v3 = v0))))
% 3.82/1.69  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4 yields:
% 3.82/1.69  | (1) set_difference(all_0_4_4, all_0_2_2) = all_0_1_1 & singleton(all_0_3_3) = all_0_2_2 & in(all_0_3_3, all_0_4_4) = all_0_0_0 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (singleton(v0) = v2) |  ~ (disjoint(v2, v1) = v3) | in(v0, v1) = 0) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_difference(v3, v2) = v1) |  ~ (set_difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (disjoint(v3, v2) = v1) |  ~ (disjoint(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (in(v3, v2) = v1) |  ~ (in(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = v0 |  ~ (set_difference(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & disjoint(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (disjoint(v1, v0) = v2) |  ? [v3] : ( ~ (v3 = 0) & disjoint(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (disjoint(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = v0) & set_difference(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (in(v0, v1) = v2) |  ? [v3] : (singleton(v0) = v3 & disjoint(v3, v1) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (singleton(v0) = v2) |  ~ (disjoint(v2, v1) = 0) |  ? [v3] : ( ~ (v3 = 0) & in(v0, v1) = v3)) &  ! [v0] :  ! [v1] : ( ~ (set_difference(v0, v1) = v0) | disjoint(v0, v1) = 0) &  ! [v0] :  ! [v1] : ( ~ (disjoint(v0, v1) = 0) | set_difference(v0, v1) = v0) &  ! [v0] :  ! [v1] : ( ~ (disjoint(v0, v1) = 0) | disjoint(v1, v0) = 0) &  ! [v0] :  ! [v1] : ( ~ (in(v1, v0) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v0, v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] :  ? [v3] : ( ~ (v3 = 0) & singleton(v0) = v2 & disjoint(v2, v1) = v3)) &  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v1, v0) = v2)) &  ? [v0] :  ? [v1] :  ? [v2] : set_difference(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : disjoint(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : in(v1, v0) = v2 &  ? [v0] :  ? [v1] : singleton(v0) = v1 & ((all_0_0_0 = 0 & all_0_1_1 = all_0_4_4) | ( ~ (all_0_0_0 = 0) &  ~ (all_0_1_1 = all_0_4_4)))
% 3.82/1.69  |
% 3.82/1.69  | Applying alpha-rule on (1) yields:
% 3.82/1.69  | (2)  ! [v0] :  ! [v1] : ( ~ (disjoint(v0, v1) = 0) | disjoint(v1, v0) = 0)
% 3.82/1.69  | (3)  ? [v0] :  ? [v1] :  ? [v2] : disjoint(v1, v0) = v2
% 3.82/1.69  | (4)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (disjoint(v1, v0) = v2) |  ? [v3] : ( ~ (v3 = 0) & disjoint(v0, v1) = v3))
% 3.82/1.70  | (5) (all_0_0_0 = 0 & all_0_1_1 = all_0_4_4) | ( ~ (all_0_0_0 = 0) &  ~ (all_0_1_1 = all_0_4_4))
% 3.82/1.70  | (6) in(all_0_3_3, all_0_4_4) = all_0_0_0
% 3.82/1.70  | (7)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (in(v0, v1) = v2) |  ? [v3] : (singleton(v0) = v3 & disjoint(v3, v1) = 0))
% 3.82/1.70  | (8)  ? [v0] :  ? [v1] :  ? [v2] : in(v1, v0) = v2
% 3.82/1.70  | (9)  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v1, v0) = v2))
% 3.82/1.70  | (10)  ? [v0] :  ? [v1] :  ? [v2] : set_difference(v1, v0) = v2
% 3.82/1.70  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_difference(v3, v2) = v1) |  ~ (set_difference(v3, v2) = v0))
% 3.82/1.70  | (12)  ? [v0] :  ? [v1] : singleton(v0) = v1
% 3.82/1.70  | (13)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (disjoint(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = v0) & set_difference(v0, v1) = v3))
% 3.82/1.70  | (14) singleton(all_0_3_3) = all_0_2_2
% 3.82/1.70  | (15)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (disjoint(v3, v2) = v1) |  ~ (disjoint(v3, v2) = v0))
% 3.82/1.70  | (16)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = v0 |  ~ (set_difference(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & disjoint(v0, v1) = v3))
% 3.82/1.70  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (singleton(v0) = v2) |  ~ (disjoint(v2, v1) = v3) | in(v0, v1) = 0)
% 3.82/1.70  | (18)  ! [v0] :  ! [v1] : ( ~ (in(v1, v0) = 0) |  ? [v2] : ( ~ (v2 = 0) & in(v0, v1) = v2))
% 3.82/1.70  | (19)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (singleton(v0) = v2) |  ~ (disjoint(v2, v1) = 0) |  ? [v3] : ( ~ (v3 = 0) & in(v0, v1) = v3))
% 3.82/1.70  | (20)  ! [v0] :  ! [v1] : ( ~ (disjoint(v0, v1) = 0) | set_difference(v0, v1) = v0)
% 3.82/1.70  | (21)  ! [v0] :  ! [v1] : ( ~ (set_difference(v0, v1) = v0) | disjoint(v0, v1) = 0)
% 3.82/1.70  | (22) set_difference(all_0_4_4, all_0_2_2) = all_0_1_1
% 3.82/1.70  | (23)  ! [v0] :  ! [v1] : ( ~ (in(v0, v1) = 0) |  ? [v2] :  ? [v3] : ( ~ (v3 = 0) & singleton(v0) = v2 & disjoint(v2, v1) = v3))
% 3.82/1.70  | (24)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 3.82/1.70  | (25)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (in(v3, v2) = v1) |  ~ (in(v3, v2) = v0))
% 3.82/1.70  |
% 3.82/1.70  | Instantiating formula (16) with all_0_1_1, all_0_2_2, all_0_4_4 and discharging atoms set_difference(all_0_4_4, all_0_2_2) = all_0_1_1, yields:
% 3.82/1.70  | (26) all_0_1_1 = all_0_4_4 |  ? [v0] : ( ~ (v0 = 0) & disjoint(all_0_4_4, all_0_2_2) = v0)
% 3.82/1.70  |
% 3.82/1.70  | Instantiating formula (7) with all_0_0_0, all_0_4_4, all_0_3_3 and discharging atoms in(all_0_3_3, all_0_4_4) = all_0_0_0, yields:
% 3.82/1.70  | (27) all_0_0_0 = 0 |  ? [v0] : (singleton(all_0_3_3) = v0 & disjoint(v0, all_0_4_4) = 0)
% 3.82/1.70  |
% 3.82/1.70  +-Applying beta-rule and splitting (5), into two cases.
% 3.82/1.70  |-Branch one:
% 3.82/1.70  | (28) all_0_0_0 = 0 & all_0_1_1 = all_0_4_4
% 3.82/1.70  |
% 3.82/1.70  	| Applying alpha-rule on (28) yields:
% 3.82/1.70  	| (29) all_0_0_0 = 0
% 3.82/1.70  	| (30) all_0_1_1 = all_0_4_4
% 3.82/1.71  	|
% 4.14/1.71  	| From (30) and (22) follows:
% 4.14/1.71  	| (31) set_difference(all_0_4_4, all_0_2_2) = all_0_4_4
% 4.14/1.71  	|
% 4.14/1.71  	| From (29) and (6) follows:
% 4.14/1.71  	| (32) in(all_0_3_3, all_0_4_4) = 0
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating formula (21) with all_0_2_2, all_0_4_4 and discharging atoms set_difference(all_0_4_4, all_0_2_2) = all_0_4_4, yields:
% 4.14/1.71  	| (33) disjoint(all_0_4_4, all_0_2_2) = 0
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating formula (23) with all_0_4_4, all_0_3_3 and discharging atoms in(all_0_3_3, all_0_4_4) = 0, yields:
% 4.14/1.71  	| (34)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & singleton(all_0_3_3) = v0 & disjoint(v0, all_0_4_4) = v1)
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating (34) with all_24_0_16, all_24_1_17 yields:
% 4.14/1.71  	| (35)  ~ (all_24_0_16 = 0) & singleton(all_0_3_3) = all_24_1_17 & disjoint(all_24_1_17, all_0_4_4) = all_24_0_16
% 4.14/1.71  	|
% 4.14/1.71  	| Applying alpha-rule on (35) yields:
% 4.14/1.71  	| (36)  ~ (all_24_0_16 = 0)
% 4.14/1.71  	| (37) singleton(all_0_3_3) = all_24_1_17
% 4.14/1.71  	| (38) disjoint(all_24_1_17, all_0_4_4) = all_24_0_16
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating formula (24) with all_0_3_3, all_24_1_17, all_0_2_2 and discharging atoms singleton(all_0_3_3) = all_24_1_17, singleton(all_0_3_3) = all_0_2_2, yields:
% 4.14/1.71  	| (39) all_24_1_17 = all_0_2_2
% 4.14/1.71  	|
% 4.14/1.71  	| From (39) and (38) follows:
% 4.14/1.71  	| (40) disjoint(all_0_2_2, all_0_4_4) = all_24_0_16
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating formula (4) with all_24_0_16, all_0_2_2, all_0_4_4 and discharging atoms disjoint(all_0_2_2, all_0_4_4) = all_24_0_16, yields:
% 4.14/1.71  	| (41) all_24_0_16 = 0 |  ? [v0] : ( ~ (v0 = 0) & disjoint(all_0_4_4, all_0_2_2) = v0)
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating formula (13) with all_24_0_16, all_0_4_4, all_0_2_2 and discharging atoms disjoint(all_0_2_2, all_0_4_4) = all_24_0_16, yields:
% 4.14/1.71  	| (42) all_24_0_16 = 0 |  ? [v0] : ( ~ (v0 = all_0_2_2) & set_difference(all_0_2_2, all_0_4_4) = v0)
% 4.14/1.71  	|
% 4.14/1.71  	| Instantiating formula (2) with all_0_2_2, all_0_4_4 and discharging atoms disjoint(all_0_4_4, all_0_2_2) = 0, yields:
% 4.14/1.71  	| (43) disjoint(all_0_2_2, all_0_4_4) = 0
% 4.14/1.71  	|
% 4.14/1.71  	+-Applying beta-rule and splitting (41), into two cases.
% 4.14/1.71  	|-Branch one:
% 4.14/1.71  	| (44) all_24_0_16 = 0
% 4.14/1.71  	|
% 4.14/1.71  		| Equations (44) can reduce 36 to:
% 4.14/1.71  		| (45) $false
% 4.14/1.71  		|
% 4.14/1.71  		|-The branch is then unsatisfiable
% 4.14/1.71  	|-Branch two:
% 4.14/1.71  	| (36)  ~ (all_24_0_16 = 0)
% 4.14/1.71  	| (47)  ? [v0] : ( ~ (v0 = 0) & disjoint(all_0_4_4, all_0_2_2) = v0)
% 4.14/1.71  	|
% 4.14/1.71  		+-Applying beta-rule and splitting (42), into two cases.
% 4.14/1.71  		|-Branch one:
% 4.14/1.71  		| (44) all_24_0_16 = 0
% 4.14/1.71  		|
% 4.14/1.71  			| Equations (44) can reduce 36 to:
% 4.14/1.71  			| (45) $false
% 4.14/1.71  			|
% 4.14/1.71  			|-The branch is then unsatisfiable
% 4.14/1.71  		|-Branch two:
% 4.14/1.71  		| (36)  ~ (all_24_0_16 = 0)
% 4.14/1.71  		| (51)  ? [v0] : ( ~ (v0 = all_0_2_2) & set_difference(all_0_2_2, all_0_4_4) = v0)
% 4.14/1.71  		|
% 4.14/1.71  			| Instantiating formula (15) with all_0_2_2, all_0_4_4, 0, all_24_0_16 and discharging atoms disjoint(all_0_2_2, all_0_4_4) = all_24_0_16, disjoint(all_0_2_2, all_0_4_4) = 0, yields:
% 4.14/1.71  			| (44) all_24_0_16 = 0
% 4.14/1.71  			|
% 4.14/1.71  			| Equations (44) can reduce 36 to:
% 4.14/1.71  			| (45) $false
% 4.14/1.71  			|
% 4.14/1.71  			|-The branch is then unsatisfiable
% 4.14/1.71  |-Branch two:
% 4.14/1.71  | (54)  ~ (all_0_0_0 = 0) &  ~ (all_0_1_1 = all_0_4_4)
% 4.14/1.71  |
% 4.14/1.71  	| Applying alpha-rule on (54) yields:
% 4.14/1.71  	| (55)  ~ (all_0_0_0 = 0)
% 4.14/1.71  	| (56)  ~ (all_0_1_1 = all_0_4_4)
% 4.14/1.71  	|
% 4.14/1.71  	+-Applying beta-rule and splitting (27), into two cases.
% 4.14/1.71  	|-Branch one:
% 4.14/1.71  	| (29) all_0_0_0 = 0
% 4.14/1.72  	|
% 4.14/1.72  		| Equations (29) can reduce 55 to:
% 4.14/1.72  		| (45) $false
% 4.14/1.72  		|
% 4.14/1.72  		|-The branch is then unsatisfiable
% 4.14/1.72  	|-Branch two:
% 4.14/1.72  	| (55)  ~ (all_0_0_0 = 0)
% 4.14/1.72  	| (60)  ? [v0] : (singleton(all_0_3_3) = v0 & disjoint(v0, all_0_4_4) = 0)
% 4.14/1.72  	|
% 4.14/1.72  		| Instantiating (60) with all_22_0_22 yields:
% 4.14/1.72  		| (61) singleton(all_0_3_3) = all_22_0_22 & disjoint(all_22_0_22, all_0_4_4) = 0
% 4.14/1.72  		|
% 4.14/1.72  		| Applying alpha-rule on (61) yields:
% 4.14/1.72  		| (62) singleton(all_0_3_3) = all_22_0_22
% 4.14/1.72  		| (63) disjoint(all_22_0_22, all_0_4_4) = 0
% 4.14/1.72  		|
% 4.14/1.72  		+-Applying beta-rule and splitting (26), into two cases.
% 4.14/1.72  		|-Branch one:
% 4.14/1.72  		| (30) all_0_1_1 = all_0_4_4
% 4.14/1.72  		|
% 4.14/1.72  			| Equations (30) can reduce 56 to:
% 4.14/1.72  			| (45) $false
% 4.14/1.72  			|
% 4.14/1.72  			|-The branch is then unsatisfiable
% 4.14/1.72  		|-Branch two:
% 4.14/1.72  		| (56)  ~ (all_0_1_1 = all_0_4_4)
% 4.14/1.72  		| (47)  ? [v0] : ( ~ (v0 = 0) & disjoint(all_0_4_4, all_0_2_2) = v0)
% 4.14/1.72  		|
% 4.14/1.72  			| Instantiating (47) with all_28_0_23 yields:
% 4.14/1.72  			| (68)  ~ (all_28_0_23 = 0) & disjoint(all_0_4_4, all_0_2_2) = all_28_0_23
% 4.14/1.72  			|
% 4.14/1.72  			| Applying alpha-rule on (68) yields:
% 4.14/1.72  			| (69)  ~ (all_28_0_23 = 0)
% 4.14/1.72  			| (70) disjoint(all_0_4_4, all_0_2_2) = all_28_0_23
% 4.14/1.72  			|
% 4.14/1.72  			| Instantiating formula (24) with all_0_3_3, all_22_0_22, all_0_2_2 and discharging atoms singleton(all_0_3_3) = all_22_0_22, singleton(all_0_3_3) = all_0_2_2, yields:
% 4.14/1.72  			| (71) all_22_0_22 = all_0_2_2
% 4.14/1.72  			|
% 4.14/1.72  			| From (71) and (63) follows:
% 4.14/1.72  			| (43) disjoint(all_0_2_2, all_0_4_4) = 0
% 4.14/1.72  			|
% 4.14/1.72  			| Instantiating formula (2) with all_0_4_4, all_0_2_2 and discharging atoms disjoint(all_0_2_2, all_0_4_4) = 0, yields:
% 4.14/1.72  			| (33) disjoint(all_0_4_4, all_0_2_2) = 0
% 4.14/1.72  			|
% 4.14/1.72  			| Instantiating formula (4) with all_28_0_23, all_0_4_4, all_0_2_2 and discharging atoms disjoint(all_0_4_4, all_0_2_2) = all_28_0_23, yields:
% 4.14/1.72  			| (74) all_28_0_23 = 0 |  ? [v0] : ( ~ (v0 = 0) & disjoint(all_0_2_2, all_0_4_4) = v0)
% 4.14/1.72  			|
% 4.14/1.72  			+-Applying beta-rule and splitting (74), into two cases.
% 4.14/1.72  			|-Branch one:
% 4.14/1.72  			| (75) all_28_0_23 = 0
% 4.14/1.72  			|
% 4.14/1.72  				| Equations (75) can reduce 69 to:
% 4.14/1.72  				| (45) $false
% 4.14/1.72  				|
% 4.14/1.72  				|-The branch is then unsatisfiable
% 4.14/1.72  			|-Branch two:
% 4.14/1.72  			| (69)  ~ (all_28_0_23 = 0)
% 4.14/1.72  			| (78)  ? [v0] : ( ~ (v0 = 0) & disjoint(all_0_2_2, all_0_4_4) = v0)
% 4.14/1.72  			|
% 4.14/1.72  				| Instantiating formula (15) with all_0_4_4, all_0_2_2, 0, all_28_0_23 and discharging atoms disjoint(all_0_4_4, all_0_2_2) = all_28_0_23, disjoint(all_0_4_4, all_0_2_2) = 0, yields:
% 4.14/1.72  				| (75) all_28_0_23 = 0
% 4.14/1.72  				|
% 4.14/1.72  				| Equations (75) can reduce 69 to:
% 4.14/1.72  				| (45) $false
% 4.14/1.72  				|
% 4.14/1.72  				|-The branch is then unsatisfiable
% 4.14/1.72  % SZS output end Proof for theBenchmark
% 4.14/1.72  
% 4.14/1.72  1140ms
%------------------------------------------------------------------------------