TSTP Solution File: SEU160+3 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SEU160+3 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Jul 19 07:11:02 EDT 2022

% Result   : Theorem 0.70s 1.07s
% Output   : Refutation 0.70s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : SEU160+3 : TPTP v8.1.0. Released v3.2.0.
% 0.06/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n009.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Sun Jun 19 07:47:52 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.70/1.07  *** allocated 10000 integers for termspace/termends
% 0.70/1.07  *** allocated 10000 integers for clauses
% 0.70/1.07  *** allocated 10000 integers for justifications
% 0.70/1.07  Bliksem 1.12
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Automatic Strategy Selection
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Clauses:
% 0.70/1.07  
% 0.70/1.07  { subset( X, X ) }.
% 0.70/1.07  { empty( empty_set ) }.
% 0.70/1.07  { empty( skol1 ) }.
% 0.70/1.07  { ! empty( skol2 ) }.
% 0.70/1.07  { alpha1( skol3, skol4 ), skol3 = empty_set, skol3 = singleton( skol4 ) }.
% 0.70/1.07  { alpha1( skol3, skol4 ), ! subset( skol3, singleton( skol4 ) ) }.
% 0.70/1.07  { ! alpha1( X, Y ), subset( X, singleton( Y ) ) }.
% 0.70/1.07  { ! alpha1( X, Y ), ! X = empty_set }.
% 0.70/1.07  { ! alpha1( X, Y ), ! X = singleton( Y ) }.
% 0.70/1.07  { ! subset( X, singleton( Y ) ), X = empty_set, X = singleton( Y ), alpha1
% 0.70/1.07    ( X, Y ) }.
% 0.70/1.07  { ! subset( X, singleton( Y ) ), X = empty_set, X = singleton( Y ) }.
% 0.70/1.07  { ! X = empty_set, subset( X, singleton( Y ) ) }.
% 0.70/1.07  { ! X = singleton( Y ), subset( X, singleton( Y ) ) }.
% 0.70/1.07  
% 0.70/1.07  percentage equality = 0.384615, percentage horn = 0.769231
% 0.70/1.07  This is a problem with some equality
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Options Used:
% 0.70/1.07  
% 0.70/1.07  useres =            1
% 0.70/1.07  useparamod =        1
% 0.70/1.07  useeqrefl =         1
% 0.70/1.07  useeqfact =         1
% 0.70/1.07  usefactor =         1
% 0.70/1.07  usesimpsplitting =  0
% 0.70/1.07  usesimpdemod =      5
% 0.70/1.07  usesimpres =        3
% 0.70/1.07  
% 0.70/1.07  resimpinuse      =  1000
% 0.70/1.07  resimpclauses =     20000
% 0.70/1.07  substype =          eqrewr
% 0.70/1.07  backwardsubs =      1
% 0.70/1.07  selectoldest =      5
% 0.70/1.07  
% 0.70/1.07  litorderings [0] =  split
% 0.70/1.07  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.70/1.07  
% 0.70/1.07  termordering =      kbo
% 0.70/1.07  
% 0.70/1.07  litapriori =        0
% 0.70/1.07  termapriori =       1
% 0.70/1.07  litaposteriori =    0
% 0.70/1.07  termaposteriori =   0
% 0.70/1.07  demodaposteriori =  0
% 0.70/1.07  ordereqreflfact =   0
% 0.70/1.07  
% 0.70/1.07  litselect =         negord
% 0.70/1.07  
% 0.70/1.07  maxweight =         15
% 0.70/1.07  maxdepth =          30000
% 0.70/1.07  maxlength =         115
% 0.70/1.07  maxnrvars =         195
% 0.70/1.07  excuselevel =       1
% 0.70/1.07  increasemaxweight = 1
% 0.70/1.07  
% 0.70/1.07  maxselected =       10000000
% 0.70/1.07  maxnrclauses =      10000000
% 0.70/1.07  
% 0.70/1.07  showgenerated =    0
% 0.70/1.07  showkept =         0
% 0.70/1.07  showselected =     0
% 0.70/1.07  showdeleted =      0
% 0.70/1.07  showresimp =       1
% 0.70/1.07  showstatus =       2000
% 0.70/1.07  
% 0.70/1.07  prologoutput =     0
% 0.70/1.07  nrgoals =          5000000
% 0.70/1.07  totalproof =       1
% 0.70/1.07  
% 0.70/1.07  Symbols occurring in the translation:
% 0.70/1.07  
% 0.70/1.07  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.70/1.07  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.70/1.07  !  [4, 1]      (w:0, o:13, a:1, s:1, b:0), 
% 0.70/1.07  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.70/1.07  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.70/1.07  subset  [37, 2]      (w:1, o:44, a:1, s:1, b:0), 
% 0.70/1.07  empty_set  [38, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.70/1.07  empty  [39, 1]      (w:1, o:18, a:1, s:1, b:0), 
% 0.70/1.07  singleton  [40, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.70/1.07  alpha1  [41, 2]      (w:1, o:45, a:1, s:1, b:1), 
% 0.70/1.07  skol1  [42, 0]      (w:1, o:9, a:1, s:1, b:1), 
% 0.70/1.07  skol2  [43, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.70/1.07  skol3  [44, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.70/1.07  skol4  [45, 0]      (w:1, o:12, a:1, s:1, b:1).
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Starting Search:
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Bliksems!, er is een bewijs:
% 0.70/1.07  % SZS status Theorem
% 0.70/1.07  % SZS output start Refutation
% 0.70/1.07  
% 0.70/1.07  (0) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.70/1.07  (4) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==> empty_set, 
% 0.70/1.07    singleton( skol4 ) ==> skol3 }.
% 0.70/1.07  (5) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( skol3, 
% 0.70/1.07    singleton( skol4 ) ) }.
% 0.70/1.07  (6) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), subset( X, singleton( Y ) )
% 0.70/1.07     }.
% 0.70/1.07  (7) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! X = empty_set }.
% 0.70/1.07  (8) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), ! X = singleton( Y ) }.
% 0.70/1.07  (10) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X = empty_set
% 0.70/1.07    , X = singleton( Y ) }.
% 0.70/1.07  (11) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, singleton( Y ) )
% 0.70/1.07     }.
% 0.70/1.07  (23) {G1,W3,D2,L1,V0,M1} R(5,11);r(7) { ! skol3 ==> empty_set }.
% 0.70/1.07  (25) {G1,W6,D2,L2,V0,M2} P(4,5);f;r(0) { alpha1( skol3, skol4 ), skol3 ==> 
% 0.70/1.07    empty_set }.
% 0.70/1.07  (27) {G2,W3,D2,L1,V0,M1} S(25);r(23) { alpha1( skol3, skol4 ) }.
% 0.70/1.07  (28) {G3,W4,D3,L1,V0,M1} R(8,27) { ! singleton( skol4 ) ==> skol3 }.
% 0.70/1.07  (30) {G1,W7,D3,L2,V0,M2} R(6,4);r(10) { skol3 ==> empty_set, singleton( 
% 0.70/1.07    skol4 ) ==> skol3 }.
% 0.70/1.07  (31) {G4,W0,D0,L0,V0,M0} S(30);r(23);r(28) {  }.
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  % SZS output end Refutation
% 0.70/1.07  found a proof!
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Unprocessed initial clauses:
% 0.70/1.07  
% 0.70/1.07  (33) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.70/1.07  (34) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.70/1.07  (35) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.70/1.07  (36) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.70/1.07  (37) {G0,W10,D3,L3,V0,M3}  { alpha1( skol3, skol4 ), skol3 = empty_set, 
% 0.70/1.07    skol3 = singleton( skol4 ) }.
% 0.70/1.07  (38) {G0,W7,D3,L2,V0,M2}  { alpha1( skol3, skol4 ), ! subset( skol3, 
% 0.70/1.07    singleton( skol4 ) ) }.
% 0.70/1.07  (39) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), subset( X, singleton( Y ) )
% 0.70/1.07     }.
% 0.70/1.07  (40) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! X = empty_set }.
% 0.70/1.07  (41) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), ! X = singleton( Y ) }.
% 0.70/1.07  (42) {G0,W14,D3,L4,V2,M4}  { ! subset( X, singleton( Y ) ), X = empty_set, 
% 0.70/1.07    X = singleton( Y ), alpha1( X, Y ) }.
% 0.70/1.07  (43) {G0,W11,D3,L3,V2,M3}  { ! subset( X, singleton( Y ) ), X = empty_set, 
% 0.70/1.07    X = singleton( Y ) }.
% 0.70/1.07  (44) {G0,W7,D3,L2,V2,M2}  { ! X = empty_set, subset( X, singleton( Y ) )
% 0.70/1.07     }.
% 0.70/1.07  (45) {G0,W8,D3,L2,V2,M2}  { ! X = singleton( Y ), subset( X, singleton( Y )
% 0.70/1.07     ) }.
% 0.70/1.07  
% 0.70/1.07  
% 0.70/1.07  Total Proof:
% 0.70/1.07  
% 0.70/1.07  subsumption: (0) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.70/1.07  parent0: (33) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  eqswap: (47) {G0,W10,D3,L3,V0,M3}  { singleton( skol4 ) = skol3, alpha1( 
% 0.70/1.07    skol3, skol4 ), skol3 = empty_set }.
% 0.70/1.07  parent0[2]: (37) {G0,W10,D3,L3,V0,M3}  { alpha1( skol3, skol4 ), skol3 = 
% 0.70/1.07    empty_set, skol3 = singleton( skol4 ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (4) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==>
% 0.70/1.07     empty_set, singleton( skol4 ) ==> skol3 }.
% 0.70/1.07  parent0: (47) {G0,W10,D3,L3,V0,M3}  { singleton( skol4 ) = skol3, alpha1( 
% 0.70/1.07    skol3, skol4 ), skol3 = empty_set }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 2
% 0.70/1.07     1 ==> 0
% 0.70/1.07     2 ==> 1
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (5) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( 
% 0.70/1.07    skol3, singleton( skol4 ) ) }.
% 0.70/1.07  parent0: (38) {G0,W7,D3,L2,V0,M2}  { alpha1( skol3, skol4 ), ! subset( 
% 0.70/1.07    skol3, singleton( skol4 ) ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07     1 ==> 1
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (6) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), subset( X, 
% 0.70/1.07    singleton( Y ) ) }.
% 0.70/1.07  parent0: (39) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), subset( X, singleton
% 0.70/1.07    ( Y ) ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07     Y := Y
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07     1 ==> 1
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (7) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! X = empty_set
% 0.70/1.07     }.
% 0.70/1.07  parent0: (40) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! X = empty_set }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07     Y := Y
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07     1 ==> 1
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (8) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), ! X = singleton
% 0.70/1.07    ( Y ) }.
% 0.70/1.07  parent0: (41) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), ! X = singleton( Y )
% 0.70/1.07     }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07     Y := Y
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07     1 ==> 1
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (10) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X
% 0.70/1.07     = empty_set, X = singleton( Y ) }.
% 0.70/1.07  parent0: (43) {G0,W11,D3,L3,V2,M3}  { ! subset( X, singleton( Y ) ), X = 
% 0.70/1.07    empty_set, X = singleton( Y ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07     Y := Y
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07     1 ==> 1
% 0.70/1.07     2 ==> 2
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (11) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, 
% 0.70/1.07    singleton( Y ) ) }.
% 0.70/1.07  parent0: (44) {G0,W7,D3,L2,V2,M2}  { ! X = empty_set, subset( X, singleton
% 0.70/1.07    ( Y ) ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07     Y := Y
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07     1 ==> 1
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  eqswap: (87) {G0,W7,D3,L2,V2,M2}  { ! empty_set = X, subset( X, singleton( 
% 0.70/1.07    Y ) ) }.
% 0.70/1.07  parent0[0]: (11) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, 
% 0.70/1.07    singleton( Y ) ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := X
% 0.70/1.07     Y := Y
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  resolution: (89) {G1,W6,D2,L2,V0,M2}  { alpha1( skol3, skol4 ), ! empty_set
% 0.70/1.07     = skol3 }.
% 0.70/1.07  parent0[1]: (5) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( 
% 0.70/1.07    skol3, singleton( skol4 ) ) }.
% 0.70/1.07  parent1[1]: (87) {G0,W7,D3,L2,V2,M2}  { ! empty_set = X, subset( X, 
% 0.70/1.07    singleton( Y ) ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  substitution1:
% 0.70/1.07     X := skol3
% 0.70/1.07     Y := skol4
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  resolution: (92) {G1,W6,D2,L2,V0,M2}  { ! skol3 = empty_set, ! empty_set = 
% 0.70/1.07    skol3 }.
% 0.70/1.07  parent0[0]: (7) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! X = empty_set
% 0.70/1.07     }.
% 0.70/1.07  parent1[0]: (89) {G1,W6,D2,L2,V0,M2}  { alpha1( skol3, skol4 ), ! empty_set
% 0.70/1.07     = skol3 }.
% 0.70/1.07  substitution0:
% 0.70/1.07     X := skol3
% 0.70/1.07     Y := skol4
% 0.70/1.07  end
% 0.70/1.07  substitution1:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  eqswap: (94) {G1,W6,D2,L2,V0,M2}  { ! skol3 = empty_set, ! skol3 = 
% 0.70/1.07    empty_set }.
% 0.70/1.07  parent0[1]: (92) {G1,W6,D2,L2,V0,M2}  { ! skol3 = empty_set, ! empty_set = 
% 0.70/1.07    skol3 }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  factor: (96) {G1,W3,D2,L1,V0,M1}  { ! skol3 = empty_set }.
% 0.70/1.07  parent0[0, 1]: (94) {G1,W6,D2,L2,V0,M2}  { ! skol3 = empty_set, ! skol3 = 
% 0.70/1.07    empty_set }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (23) {G1,W3,D2,L1,V0,M1} R(5,11);r(7) { ! skol3 ==> empty_set
% 0.70/1.07     }.
% 0.70/1.07  parent0: (96) {G1,W3,D2,L1,V0,M1}  { ! skol3 = empty_set }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  permutation0:
% 0.70/1.07     0 ==> 0
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  eqswap: (97) {G0,W10,D3,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3, 
% 0.70/1.07    skol4 ), singleton( skol4 ) ==> skol3 }.
% 0.70/1.07  parent0[1]: (4) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==> 
% 0.70/1.07    empty_set, singleton( skol4 ) ==> skol3 }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  paramod: (100) {G1,W12,D2,L4,V0,M4}  { ! subset( skol3, skol3 ), empty_set 
% 0.70/1.07    ==> skol3, alpha1( skol3, skol4 ), alpha1( skol3, skol4 ) }.
% 0.70/1.07  parent0[2]: (97) {G0,W10,D3,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3
% 0.70/1.07    , skol4 ), singleton( skol4 ) ==> skol3 }.
% 0.70/1.07  parent1[1; 3]: (5) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset
% 0.70/1.07    ( skol3, singleton( skol4 ) ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  substitution1:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  resolution: (102) {G1,W9,D2,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3
% 0.70/1.07    , skol4 ), alpha1( skol3, skol4 ) }.
% 0.70/1.07  parent0[0]: (100) {G1,W12,D2,L4,V0,M4}  { ! subset( skol3, skol3 ), 
% 0.70/1.07    empty_set ==> skol3, alpha1( skol3, skol4 ), alpha1( skol3, skol4 ) }.
% 0.70/1.07  parent1[0]: (0) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  substitution1:
% 0.70/1.07     X := skol3
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  eqswap: (103) {G1,W9,D2,L3,V0,M3}  { skol3 ==> empty_set, alpha1( skol3, 
% 0.70/1.07    skol4 ), alpha1( skol3, skol4 ) }.
% 0.70/1.07  parent0[0]: (102) {G1,W9,D2,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3
% 0.70/1.07    , skol4 ), alpha1( skol3, skol4 ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  factor: (104) {G1,W6,D2,L2,V0,M2}  { skol3 ==> empty_set, alpha1( skol3, 
% 0.70/1.07    skol4 ) }.
% 0.70/1.07  parent0[1, 2]: (103) {G1,W9,D2,L3,V0,M3}  { skol3 ==> empty_set, alpha1( 
% 0.70/1.07    skol3, skol4 ), alpha1( skol3, skol4 ) }.
% 0.70/1.07  substitution0:
% 0.70/1.07  end
% 0.70/1.07  
% 0.70/1.07  subsumption: (25) {G1,W6,D2,L2,V0,M2} P(4,5);f;r(0) { alpha1( skol3, skol4
% 0.70/1.08     ), skol3 ==> empty_set }.
% 0.70/1.08  parent0: (104) {G1,W6,D2,L2,V0,M2}  { skol3 ==> empty_set, alpha1( skol3, 
% 0.70/1.08    skol4 ) }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  permutation0:
% 0.70/1.08     0 ==> 1
% 0.70/1.08     1 ==> 0
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  resolution: (108) {G2,W3,D2,L1,V0,M1}  { alpha1( skol3, skol4 ) }.
% 0.70/1.08  parent0[0]: (23) {G1,W3,D2,L1,V0,M1} R(5,11);r(7) { ! skol3 ==> empty_set
% 0.70/1.08     }.
% 0.70/1.08  parent1[1]: (25) {G1,W6,D2,L2,V0,M2} P(4,5);f;r(0) { alpha1( skol3, skol4 )
% 0.70/1.08    , skol3 ==> empty_set }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  substitution1:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  subsumption: (27) {G2,W3,D2,L1,V0,M1} S(25);r(23) { alpha1( skol3, skol4 )
% 0.70/1.08     }.
% 0.70/1.08  parent0: (108) {G2,W3,D2,L1,V0,M1}  { alpha1( skol3, skol4 ) }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  permutation0:
% 0.70/1.08     0 ==> 0
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (109) {G0,W7,D3,L2,V2,M2}  { ! singleton( Y ) = X, ! alpha1( X, Y )
% 0.70/1.08     }.
% 0.70/1.08  parent0[1]: (8) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), ! X = singleton( 
% 0.70/1.08    Y ) }.
% 0.70/1.08  substitution0:
% 0.70/1.08     X := X
% 0.70/1.08     Y := Y
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  resolution: (110) {G1,W4,D3,L1,V0,M1}  { ! singleton( skol4 ) = skol3 }.
% 0.70/1.08  parent0[1]: (109) {G0,W7,D3,L2,V2,M2}  { ! singleton( Y ) = X, ! alpha1( X
% 0.70/1.08    , Y ) }.
% 0.70/1.08  parent1[0]: (27) {G2,W3,D2,L1,V0,M1} S(25);r(23) { alpha1( skol3, skol4 )
% 0.70/1.08     }.
% 0.70/1.08  substitution0:
% 0.70/1.08     X := skol3
% 0.70/1.08     Y := skol4
% 0.70/1.08  end
% 0.70/1.08  substitution1:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  subsumption: (28) {G3,W4,D3,L1,V0,M1} R(8,27) { ! singleton( skol4 ) ==> 
% 0.70/1.08    skol3 }.
% 0.70/1.08  parent0: (110) {G1,W4,D3,L1,V0,M1}  { ! singleton( skol4 ) = skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  permutation0:
% 0.70/1.08     0 ==> 0
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (112) {G0,W10,D3,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3, 
% 0.70/1.08    skol4 ), singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  parent0[1]: (4) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==> 
% 0.70/1.08    empty_set, singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (115) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, singleton
% 0.70/1.08    ( Y ) ), X = singleton( Y ) }.
% 0.70/1.08  parent0[1]: (10) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X 
% 0.70/1.08    = empty_set, X = singleton( Y ) }.
% 0.70/1.08  substitution0:
% 0.70/1.08     X := X
% 0.70/1.08     Y := Y
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  resolution: (118) {G1,W11,D3,L3,V0,M3}  { subset( skol3, singleton( skol4 )
% 0.70/1.08     ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  parent0[0]: (6) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), subset( X, 
% 0.70/1.08    singleton( Y ) ) }.
% 0.70/1.08  parent1[1]: (112) {G0,W10,D3,L3,V0,M3}  { empty_set ==> skol3, alpha1( 
% 0.70/1.08    skol3, skol4 ), singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08     X := skol3
% 0.70/1.08     Y := skol4
% 0.70/1.08  end
% 0.70/1.08  substitution1:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  resolution: (119) {G1,W14,D3,L4,V0,M4}  { empty_set = skol3, skol3 = 
% 0.70/1.08    singleton( skol4 ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  parent0[1]: (115) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, 
% 0.70/1.08    singleton( Y ) ), X = singleton( Y ) }.
% 0.70/1.08  parent1[0]: (118) {G1,W11,D3,L3,V0,M3}  { subset( skol3, singleton( skol4 )
% 0.70/1.08     ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08     X := skol3
% 0.70/1.08     Y := skol4
% 0.70/1.08  end
% 0.70/1.08  substitution1:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (123) {G1,W14,D3,L4,V0,M4}  { skol3 ==> singleton( skol4 ), 
% 0.70/1.08    empty_set = skol3, skol3 = singleton( skol4 ), empty_set ==> skol3 }.
% 0.70/1.08  parent0[3]: (119) {G1,W14,D3,L4,V0,M4}  { empty_set = skol3, skol3 = 
% 0.70/1.08    singleton( skol4 ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (126) {G1,W14,D3,L4,V0,M4}  { skol3 ==> empty_set, skol3 ==> 
% 0.70/1.08    singleton( skol4 ), empty_set = skol3, skol3 = singleton( skol4 ) }.
% 0.70/1.08  parent0[3]: (123) {G1,W14,D3,L4,V0,M4}  { skol3 ==> singleton( skol4 ), 
% 0.70/1.08    empty_set = skol3, skol3 = singleton( skol4 ), empty_set ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (128) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) = skol3, skol3 ==>
% 0.70/1.08     empty_set, skol3 ==> singleton( skol4 ), empty_set = skol3 }.
% 0.70/1.08  parent0[3]: (126) {G1,W14,D3,L4,V0,M4}  { skol3 ==> empty_set, skol3 ==> 
% 0.70/1.08    singleton( skol4 ), empty_set = skol3, skol3 = singleton( skol4 ) }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (130) {G1,W14,D3,L4,V0,M4}  { skol3 = empty_set, singleton( skol4 )
% 0.70/1.08     = skol3, skol3 ==> empty_set, skol3 ==> singleton( skol4 ) }.
% 0.70/1.08  parent0[3]: (128) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) = skol3, skol3
% 0.70/1.08     ==> empty_set, skol3 ==> singleton( skol4 ), empty_set = skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  eqswap: (132) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) ==> skol3, skol3 =
% 0.70/1.08     empty_set, singleton( skol4 ) = skol3, skol3 ==> empty_set }.
% 0.70/1.08  parent0[3]: (130) {G1,W14,D3,L4,V0,M4}  { skol3 = empty_set, singleton( 
% 0.70/1.08    skol4 ) = skol3, skol3 ==> empty_set, skol3 ==> singleton( skol4 ) }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  factor: (147) {G1,W11,D3,L3,V0,M3}  { singleton( skol4 ) ==> skol3, skol3 =
% 0.70/1.08     empty_set, singleton( skol4 ) = skol3 }.
% 0.70/1.08  parent0[1, 3]: (132) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) ==> skol3, 
% 0.70/1.08    skol3 = empty_set, singleton( skol4 ) = skol3, skol3 ==> empty_set }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  factor: (148) {G1,W7,D3,L2,V0,M2}  { singleton( skol4 ) ==> skol3, skol3 = 
% 0.70/1.08    empty_set }.
% 0.70/1.08  parent0[0, 2]: (147) {G1,W11,D3,L3,V0,M3}  { singleton( skol4 ) ==> skol3, 
% 0.70/1.08    skol3 = empty_set, singleton( skol4 ) = skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  subsumption: (30) {G1,W7,D3,L2,V0,M2} R(6,4);r(10) { skol3 ==> empty_set, 
% 0.70/1.08    singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  parent0: (148) {G1,W7,D3,L2,V0,M2}  { singleton( skol4 ) ==> skol3, skol3 =
% 0.70/1.08     empty_set }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  permutation0:
% 0.70/1.08     0 ==> 1
% 0.70/1.08     1 ==> 0
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  resolution: (160) {G2,W4,D3,L1,V0,M1}  { singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  parent0[0]: (23) {G1,W3,D2,L1,V0,M1} R(5,11);r(7) { ! skol3 ==> empty_set
% 0.70/1.08     }.
% 0.70/1.08  parent1[0]: (30) {G1,W7,D3,L2,V0,M2} R(6,4);r(10) { skol3 ==> empty_set, 
% 0.70/1.08    singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  substitution1:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  resolution: (161) {G3,W0,D0,L0,V0,M0}  {  }.
% 0.70/1.08  parent0[0]: (28) {G3,W4,D3,L1,V0,M1} R(8,27) { ! singleton( skol4 ) ==> 
% 0.70/1.08    skol3 }.
% 0.70/1.08  parent1[0]: (160) {G2,W4,D3,L1,V0,M1}  { singleton( skol4 ) ==> skol3 }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  substitution1:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  subsumption: (31) {G4,W0,D0,L0,V0,M0} S(30);r(23);r(28) {  }.
% 0.70/1.08  parent0: (161) {G3,W0,D0,L0,V0,M0}  {  }.
% 0.70/1.08  substitution0:
% 0.70/1.08  end
% 0.70/1.08  permutation0:
% 0.70/1.08  end
% 0.70/1.08  
% 0.70/1.08  Proof check complete!
% 0.70/1.08  
% 0.70/1.08  Memory use:
% 0.70/1.08  
% 0.70/1.08  space for terms:        445
% 0.70/1.08  space for clauses:      1708
% 0.70/1.08  
% 0.70/1.08  
% 0.70/1.08  clauses generated:      60
% 0.70/1.08  clauses kept:           32
% 0.70/1.08  clauses selected:       17
% 0.70/1.08  clauses deleted:        2
% 0.70/1.08  clauses inuse deleted:  0
% 0.70/1.08  
% 0.70/1.08  subsentry:          1242
% 0.70/1.08  literals s-matched: 268
% 0.70/1.08  literals matched:   268
% 0.70/1.08  full subsumption:   0
% 0.70/1.08  
% 0.70/1.08  checksum:           1111922463
% 0.70/1.08  
% 0.70/1.08  
% 0.70/1.08  Bliksem ended
%------------------------------------------------------------------------------