TSTP Solution File: SEU160+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SEU160+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Jul 19 07:11:02 EDT 2022

% Result   : Theorem 0.78s 1.16s
% Output   : Refutation 0.78s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.14  % Problem  : SEU160+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.15  % Command  : bliksem %s
% 0.15/0.36  % Computer : n010.cluster.edu
% 0.15/0.36  % Model    : x86_64 x86_64
% 0.15/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.36  % Memory   : 8042.1875MB
% 0.15/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.36  % CPULimit : 300
% 0.15/0.36  % DateTime : Mon Jun 20 03:20:52 EDT 2022
% 0.15/0.36  % CPUTime  : 
% 0.78/1.16  *** allocated 10000 integers for termspace/termends
% 0.78/1.16  *** allocated 10000 integers for clauses
% 0.78/1.16  *** allocated 10000 integers for justifications
% 0.78/1.16  Bliksem 1.12
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Automatic Strategy Selection
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Clauses:
% 0.78/1.16  
% 0.78/1.16  { empty( skol1 ) }.
% 0.78/1.16  { ! empty( skol2 ) }.
% 0.78/1.16  { subset( X, X ) }.
% 0.78/1.16  { && }.
% 0.78/1.16  { && }.
% 0.78/1.16  { empty( empty_set ) }.
% 0.78/1.16  { alpha1( skol3, skol4 ), skol3 = empty_set, skol3 = singleton( skol4 ) }.
% 0.78/1.16  { alpha1( skol3, skol4 ), ! subset( skol3, singleton( skol4 ) ) }.
% 0.78/1.16  { ! alpha1( X, Y ), subset( X, singleton( Y ) ) }.
% 0.78/1.16  { ! alpha1( X, Y ), ! X = empty_set }.
% 0.78/1.16  { ! alpha1( X, Y ), ! X = singleton( Y ) }.
% 0.78/1.16  { ! subset( X, singleton( Y ) ), X = empty_set, X = singleton( Y ), alpha1
% 0.78/1.16    ( X, Y ) }.
% 0.78/1.16  { ! subset( X, singleton( Y ) ), X = empty_set, X = singleton( Y ) }.
% 0.78/1.16  { ! X = empty_set, subset( X, singleton( Y ) ) }.
% 0.78/1.16  { ! X = singleton( Y ), subset( X, singleton( Y ) ) }.
% 0.78/1.16  
% 0.78/1.16  percentage equality = 0.370370, percentage horn = 0.785714
% 0.78/1.16  This is a problem with some equality
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Options Used:
% 0.78/1.16  
% 0.78/1.16  useres =            1
% 0.78/1.16  useparamod =        1
% 0.78/1.16  useeqrefl =         1
% 0.78/1.16  useeqfact =         1
% 0.78/1.16  usefactor =         1
% 0.78/1.16  usesimpsplitting =  0
% 0.78/1.16  usesimpdemod =      5
% 0.78/1.16  usesimpres =        3
% 0.78/1.16  
% 0.78/1.16  resimpinuse      =  1000
% 0.78/1.16  resimpclauses =     20000
% 0.78/1.16  substype =          eqrewr
% 0.78/1.16  backwardsubs =      1
% 0.78/1.16  selectoldest =      5
% 0.78/1.16  
% 0.78/1.16  litorderings [0] =  split
% 0.78/1.16  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.78/1.16  
% 0.78/1.16  termordering =      kbo
% 0.78/1.16  
% 0.78/1.16  litapriori =        0
% 0.78/1.16  termapriori =       1
% 0.78/1.16  litaposteriori =    0
% 0.78/1.16  termaposteriori =   0
% 0.78/1.16  demodaposteriori =  0
% 0.78/1.16  ordereqreflfact =   0
% 0.78/1.16  
% 0.78/1.16  litselect =         negord
% 0.78/1.16  
% 0.78/1.16  maxweight =         15
% 0.78/1.16  maxdepth =          30000
% 0.78/1.16  maxlength =         115
% 0.78/1.16  maxnrvars =         195
% 0.78/1.16  excuselevel =       1
% 0.78/1.16  increasemaxweight = 1
% 0.78/1.16  
% 0.78/1.16  maxselected =       10000000
% 0.78/1.16  maxnrclauses =      10000000
% 0.78/1.16  
% 0.78/1.16  showgenerated =    0
% 0.78/1.16  showkept =         0
% 0.78/1.16  showselected =     0
% 0.78/1.16  showdeleted =      0
% 0.78/1.16  showresimp =       1
% 0.78/1.16  showstatus =       2000
% 0.78/1.16  
% 0.78/1.16  prologoutput =     0
% 0.78/1.16  nrgoals =          5000000
% 0.78/1.16  totalproof =       1
% 0.78/1.16  
% 0.78/1.16  Symbols occurring in the translation:
% 0.78/1.16  
% 0.78/1.16  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.78/1.16  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.78/1.16  &&  [3, 0]      (w:1, o:4, a:1, s:1, b:0), 
% 0.78/1.16  !  [4, 1]      (w:0, o:13, a:1, s:1, b:0), 
% 0.78/1.16  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.78/1.16  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.78/1.16  empty  [36, 1]      (w:1, o:18, a:1, s:1, b:0), 
% 0.78/1.16  subset  [38, 2]      (w:1, o:44, a:1, s:1, b:0), 
% 0.78/1.16  empty_set  [39, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.78/1.16  singleton  [40, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.78/1.16  alpha1  [41, 2]      (w:1, o:45, a:1, s:1, b:1), 
% 0.78/1.16  skol1  [42, 0]      (w:1, o:9, a:1, s:1, b:1), 
% 0.78/1.16  skol2  [43, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.78/1.16  skol3  [44, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.78/1.16  skol4  [45, 0]      (w:1, o:12, a:1, s:1, b:1).
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Starting Search:
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Bliksems!, er is een bewijs:
% 0.78/1.16  % SZS status Theorem
% 0.78/1.16  % SZS output start Refutation
% 0.78/1.16  
% 0.78/1.16  (2) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.78/1.16  (5) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==> empty_set, 
% 0.78/1.16    singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  (6) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( skol3, 
% 0.78/1.16    singleton( skol4 ) ) }.
% 0.78/1.16  (7) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), subset( X, singleton( Y ) )
% 0.78/1.16     }.
% 0.78/1.16  (8) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! X = empty_set }.
% 0.78/1.16  (9) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), ! X = singleton( Y ) }.
% 0.78/1.16  (11) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X = empty_set
% 0.78/1.16    , X = singleton( Y ) }.
% 0.78/1.16  (12) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, singleton( Y ) )
% 0.78/1.16     }.
% 0.78/1.16  (14) {G1,W3,D2,L1,V1,M1} Q(8) { ! alpha1( empty_set, X ) }.
% 0.78/1.16  (26) {G1,W7,D3,L2,V0,M2} R(7,5);r(11) { skol3 ==> empty_set, singleton( 
% 0.78/1.16    skol4 ) ==> skol3 }.
% 0.78/1.16  (29) {G2,W9,D2,L3,V1,M3} P(26,9) { ! alpha1( X, skol4 ), ! X = skol3, skol3
% 0.78/1.16     ==> empty_set }.
% 0.78/1.16  (32) {G3,W6,D2,L2,V0,M2} Q(29) { ! alpha1( skol3, skol4 ), skol3 ==> 
% 0.78/1.16    empty_set }.
% 0.78/1.16  (33) {G4,W3,D2,L1,V0,M1} R(6,32);d(26);r(2) { skol3 ==> empty_set }.
% 0.78/1.16  (35) {G5,W0,D0,L0,V0,M0} R(6,12);d(33);d(33);q;r(14) {  }.
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  % SZS output end Refutation
% 0.78/1.16  found a proof!
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Unprocessed initial clauses:
% 0.78/1.16  
% 0.78/1.16  (37) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.78/1.16  (38) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.78/1.16  (39) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.78/1.16  (40) {G0,W1,D1,L1,V0,M1}  { && }.
% 0.78/1.16  (41) {G0,W1,D1,L1,V0,M1}  { && }.
% 0.78/1.16  (42) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.78/1.16  (43) {G0,W10,D3,L3,V0,M3}  { alpha1( skol3, skol4 ), skol3 = empty_set, 
% 0.78/1.16    skol3 = singleton( skol4 ) }.
% 0.78/1.16  (44) {G0,W7,D3,L2,V0,M2}  { alpha1( skol3, skol4 ), ! subset( skol3, 
% 0.78/1.16    singleton( skol4 ) ) }.
% 0.78/1.16  (45) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), subset( X, singleton( Y ) )
% 0.78/1.16     }.
% 0.78/1.16  (46) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! X = empty_set }.
% 0.78/1.16  (47) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), ! X = singleton( Y ) }.
% 0.78/1.16  (48) {G0,W14,D3,L4,V2,M4}  { ! subset( X, singleton( Y ) ), X = empty_set, 
% 0.78/1.16    X = singleton( Y ), alpha1( X, Y ) }.
% 0.78/1.16  (49) {G0,W11,D3,L3,V2,M3}  { ! subset( X, singleton( Y ) ), X = empty_set, 
% 0.78/1.16    X = singleton( Y ) }.
% 0.78/1.16  (50) {G0,W7,D3,L2,V2,M2}  { ! X = empty_set, subset( X, singleton( Y ) )
% 0.78/1.16     }.
% 0.78/1.16  (51) {G0,W8,D3,L2,V2,M2}  { ! X = singleton( Y ), subset( X, singleton( Y )
% 0.78/1.16     ) }.
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Total Proof:
% 0.78/1.16  
% 0.78/1.16  subsumption: (2) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.78/1.16  parent0: (39) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (53) {G0,W10,D3,L3,V0,M3}  { singleton( skol4 ) = skol3, alpha1( 
% 0.78/1.16    skol3, skol4 ), skol3 = empty_set }.
% 0.78/1.16  parent0[2]: (43) {G0,W10,D3,L3,V0,M3}  { alpha1( skol3, skol4 ), skol3 = 
% 0.78/1.16    empty_set, skol3 = singleton( skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (5) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==>
% 0.78/1.16     empty_set, singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  parent0: (53) {G0,W10,D3,L3,V0,M3}  { singleton( skol4 ) = skol3, alpha1( 
% 0.78/1.16    skol3, skol4 ), skol3 = empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 2
% 0.78/1.16     1 ==> 0
% 0.78/1.16     2 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (6) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( 
% 0.78/1.16    skol3, singleton( skol4 ) ) }.
% 0.78/1.16  parent0: (44) {G0,W7,D3,L2,V0,M2}  { alpha1( skol3, skol4 ), ! subset( 
% 0.78/1.16    skol3, singleton( skol4 ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (7) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), subset( X, 
% 0.78/1.16    singleton( Y ) ) }.
% 0.78/1.16  parent0: (45) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), subset( X, singleton
% 0.78/1.16    ( Y ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (8) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! X = empty_set
% 0.78/1.16     }.
% 0.78/1.16  parent0: (46) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! X = empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (9) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), ! X = singleton
% 0.78/1.16    ( Y ) }.
% 0.78/1.16  parent0: (47) {G0,W7,D3,L2,V2,M2}  { ! alpha1( X, Y ), ! X = singleton( Y )
% 0.78/1.16     }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (11) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X
% 0.78/1.16     = empty_set, X = singleton( Y ) }.
% 0.78/1.16  parent0: (49) {G0,W11,D3,L3,V2,M3}  { ! subset( X, singleton( Y ) ), X = 
% 0.78/1.16    empty_set, X = singleton( Y ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16     2 ==> 2
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (12) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, 
% 0.78/1.16    singleton( Y ) ) }.
% 0.78/1.16  parent0: (50) {G0,W7,D3,L2,V2,M2}  { ! X = empty_set, subset( X, singleton
% 0.78/1.16    ( Y ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (93) {G0,W6,D2,L2,V2,M2}  { ! empty_set = X, ! alpha1( X, Y ) }.
% 0.78/1.16  parent0[1]: (8) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! X = empty_set
% 0.78/1.16     }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqrefl: (94) {G0,W3,D2,L1,V1,M1}  { ! alpha1( empty_set, X ) }.
% 0.78/1.16  parent0[0]: (93) {G0,W6,D2,L2,V2,M2}  { ! empty_set = X, ! alpha1( X, Y )
% 0.78/1.16     }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := empty_set
% 0.78/1.16     Y := X
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (14) {G1,W3,D2,L1,V1,M1} Q(8) { ! alpha1( empty_set, X ) }.
% 0.78/1.16  parent0: (94) {G0,W3,D2,L1,V1,M1}  { ! alpha1( empty_set, X ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (95) {G0,W10,D3,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3, 
% 0.78/1.16    skol4 ), singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  parent0[1]: (5) {G0,W10,D3,L3,V0,M3} I { alpha1( skol3, skol4 ), skol3 ==> 
% 0.78/1.16    empty_set, singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (98) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, singleton
% 0.78/1.16    ( Y ) ), X = singleton( Y ) }.
% 0.78/1.16  parent0[1]: (11) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X 
% 0.78/1.16    = empty_set, X = singleton( Y ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  resolution: (101) {G1,W11,D3,L3,V0,M3}  { subset( skol3, singleton( skol4 )
% 0.78/1.16     ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  parent0[0]: (7) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), subset( X, 
% 0.78/1.16    singleton( Y ) ) }.
% 0.78/1.16  parent1[1]: (95) {G0,W10,D3,L3,V0,M3}  { empty_set ==> skol3, alpha1( skol3
% 0.78/1.16    , skol4 ), singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := skol3
% 0.78/1.16     Y := skol4
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  resolution: (102) {G1,W14,D3,L4,V0,M4}  { empty_set = skol3, skol3 = 
% 0.78/1.16    singleton( skol4 ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  parent0[1]: (98) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, 
% 0.78/1.16    singleton( Y ) ), X = singleton( Y ) }.
% 0.78/1.16  parent1[0]: (101) {G1,W11,D3,L3,V0,M3}  { subset( skol3, singleton( skol4 )
% 0.78/1.16     ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := skol3
% 0.78/1.16     Y := skol4
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (106) {G1,W14,D3,L4,V0,M4}  { skol3 ==> singleton( skol4 ), 
% 0.78/1.16    empty_set = skol3, skol3 = singleton( skol4 ), empty_set ==> skol3 }.
% 0.78/1.16  parent0[3]: (102) {G1,W14,D3,L4,V0,M4}  { empty_set = skol3, skol3 = 
% 0.78/1.16    singleton( skol4 ), empty_set ==> skol3, singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (109) {G1,W14,D3,L4,V0,M4}  { skol3 ==> empty_set, skol3 ==> 
% 0.78/1.16    singleton( skol4 ), empty_set = skol3, skol3 = singleton( skol4 ) }.
% 0.78/1.16  parent0[3]: (106) {G1,W14,D3,L4,V0,M4}  { skol3 ==> singleton( skol4 ), 
% 0.78/1.16    empty_set = skol3, skol3 = singleton( skol4 ), empty_set ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (111) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) = skol3, skol3 ==>
% 0.78/1.16     empty_set, skol3 ==> singleton( skol4 ), empty_set = skol3 }.
% 0.78/1.16  parent0[3]: (109) {G1,W14,D3,L4,V0,M4}  { skol3 ==> empty_set, skol3 ==> 
% 0.78/1.16    singleton( skol4 ), empty_set = skol3, skol3 = singleton( skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (113) {G1,W14,D3,L4,V0,M4}  { skol3 = empty_set, singleton( skol4 )
% 0.78/1.16     = skol3, skol3 ==> empty_set, skol3 ==> singleton( skol4 ) }.
% 0.78/1.16  parent0[3]: (111) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) = skol3, skol3
% 0.78/1.16     ==> empty_set, skol3 ==> singleton( skol4 ), empty_set = skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (115) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) ==> skol3, skol3 =
% 0.78/1.16     empty_set, singleton( skol4 ) = skol3, skol3 ==> empty_set }.
% 0.78/1.16  parent0[3]: (113) {G1,W14,D3,L4,V0,M4}  { skol3 = empty_set, singleton( 
% 0.78/1.16    skol4 ) = skol3, skol3 ==> empty_set, skol3 ==> singleton( skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  factor: (130) {G1,W11,D3,L3,V0,M3}  { singleton( skol4 ) ==> skol3, skol3 =
% 0.78/1.16     empty_set, singleton( skol4 ) = skol3 }.
% 0.78/1.16  parent0[1, 3]: (115) {G1,W14,D3,L4,V0,M4}  { singleton( skol4 ) ==> skol3, 
% 0.78/1.16    skol3 = empty_set, singleton( skol4 ) = skol3, skol3 ==> empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  factor: (131) {G1,W7,D3,L2,V0,M2}  { singleton( skol4 ) ==> skol3, skol3 = 
% 0.78/1.16    empty_set }.
% 0.78/1.16  parent0[0, 2]: (130) {G1,W11,D3,L3,V0,M3}  { singleton( skol4 ) ==> skol3, 
% 0.78/1.16    skol3 = empty_set, singleton( skol4 ) = skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (26) {G1,W7,D3,L2,V0,M2} R(7,5);r(11) { skol3 ==> empty_set, 
% 0.78/1.16    singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  parent0: (131) {G1,W7,D3,L2,V0,M2}  { singleton( skol4 ) ==> skol3, skol3 =
% 0.78/1.16     empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 1
% 0.78/1.16     1 ==> 0
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (138) {G1,W7,D3,L2,V0,M2}  { empty_set ==> skol3, singleton( skol4
% 0.78/1.16     ) ==> skol3 }.
% 0.78/1.16  parent0[0]: (26) {G1,W7,D3,L2,V0,M2} R(7,5);r(11) { skol3 ==> empty_set, 
% 0.78/1.16    singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (141) {G0,W7,D3,L2,V2,M2}  { ! singleton( Y ) = X, ! alpha1( X, Y )
% 0.78/1.16     }.
% 0.78/1.16  parent0[1]: (9) {G0,W7,D3,L2,V2,M2} I { ! alpha1( X, Y ), ! X = singleton( 
% 0.78/1.16    Y ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  paramod: (142) {G1,W9,D2,L3,V1,M3}  { ! skol3 = X, empty_set ==> skol3, ! 
% 0.78/1.16    alpha1( X, skol4 ) }.
% 0.78/1.16  parent0[1]: (138) {G1,W7,D3,L2,V0,M2}  { empty_set ==> skol3, singleton( 
% 0.78/1.16    skol4 ) ==> skol3 }.
% 0.78/1.16  parent1[0; 2]: (141) {G0,W7,D3,L2,V2,M2}  { ! singleton( Y ) = X, ! alpha1
% 0.78/1.16    ( X, Y ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16     X := X
% 0.78/1.16     Y := skol4
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (144) {G1,W9,D2,L3,V1,M3}  { skol3 ==> empty_set, ! skol3 = X, ! 
% 0.78/1.16    alpha1( X, skol4 ) }.
% 0.78/1.16  parent0[1]: (142) {G1,W9,D2,L3,V1,M3}  { ! skol3 = X, empty_set ==> skol3, 
% 0.78/1.16    ! alpha1( X, skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (145) {G1,W9,D2,L3,V1,M3}  { ! X = skol3, skol3 ==> empty_set, ! 
% 0.78/1.16    alpha1( X, skol4 ) }.
% 0.78/1.16  parent0[1]: (144) {G1,W9,D2,L3,V1,M3}  { skol3 ==> empty_set, ! skol3 = X, 
% 0.78/1.16    ! alpha1( X, skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (29) {G2,W9,D2,L3,V1,M3} P(26,9) { ! alpha1( X, skol4 ), ! X =
% 0.78/1.16     skol3, skol3 ==> empty_set }.
% 0.78/1.16  parent0: (145) {G1,W9,D2,L3,V1,M3}  { ! X = skol3, skol3 ==> empty_set, ! 
% 0.78/1.16    alpha1( X, skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 1
% 0.78/1.16     1 ==> 2
% 0.78/1.16     2 ==> 0
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (146) {G2,W9,D2,L3,V1,M3}  { ! skol3 = X, ! alpha1( X, skol4 ), 
% 0.78/1.16    skol3 ==> empty_set }.
% 0.78/1.16  parent0[1]: (29) {G2,W9,D2,L3,V1,M3} P(26,9) { ! alpha1( X, skol4 ), ! X = 
% 0.78/1.16    skol3, skol3 ==> empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqrefl: (149) {G0,W6,D2,L2,V0,M2}  { ! alpha1( skol3, skol4 ), skol3 ==> 
% 0.78/1.16    empty_set }.
% 0.78/1.16  parent0[0]: (146) {G2,W9,D2,L3,V1,M3}  { ! skol3 = X, ! alpha1( X, skol4 )
% 0.78/1.16    , skol3 ==> empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := skol3
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (32) {G3,W6,D2,L2,V0,M2} Q(29) { ! alpha1( skol3, skol4 ), 
% 0.78/1.16    skol3 ==> empty_set }.
% 0.78/1.16  parent0: (149) {G0,W6,D2,L2,V0,M2}  { ! alpha1( skol3, skol4 ), skol3 ==> 
% 0.78/1.16    empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16     1 ==> 1
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (151) {G3,W6,D2,L2,V0,M2}  { empty_set ==> skol3, ! alpha1( skol3, 
% 0.78/1.16    skol4 ) }.
% 0.78/1.16  parent0[1]: (32) {G3,W6,D2,L2,V0,M2} Q(29) { ! alpha1( skol3, skol4 ), 
% 0.78/1.16    skol3 ==> empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (152) {G1,W7,D3,L2,V0,M2}  { empty_set ==> skol3, singleton( skol4
% 0.78/1.16     ) ==> skol3 }.
% 0.78/1.16  parent0[0]: (26) {G1,W7,D3,L2,V0,M2} R(7,5);r(11) { skol3 ==> empty_set, 
% 0.78/1.16    singleton( skol4 ) ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  resolution: (155) {G1,W7,D3,L2,V0,M2}  { empty_set ==> skol3, ! subset( 
% 0.78/1.16    skol3, singleton( skol4 ) ) }.
% 0.78/1.16  parent0[1]: (151) {G3,W6,D2,L2,V0,M2}  { empty_set ==> skol3, ! alpha1( 
% 0.78/1.16    skol3, skol4 ) }.
% 0.78/1.16  parent1[0]: (6) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( 
% 0.78/1.16    skol3, singleton( skol4 ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  paramod: (156) {G2,W9,D2,L3,V0,M3}  { ! subset( skol3, skol3 ), empty_set 
% 0.78/1.16    ==> skol3, empty_set ==> skol3 }.
% 0.78/1.16  parent0[1]: (152) {G1,W7,D3,L2,V0,M2}  { empty_set ==> skol3, singleton( 
% 0.78/1.16    skol4 ) ==> skol3 }.
% 0.78/1.16  parent1[1; 3]: (155) {G1,W7,D3,L2,V0,M2}  { empty_set ==> skol3, ! subset( 
% 0.78/1.16    skol3, singleton( skol4 ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  factor: (157) {G2,W6,D2,L2,V0,M2}  { ! subset( skol3, skol3 ), empty_set 
% 0.78/1.16    ==> skol3 }.
% 0.78/1.16  parent0[1, 2]: (156) {G2,W9,D2,L3,V0,M3}  { ! subset( skol3, skol3 ), 
% 0.78/1.16    empty_set ==> skol3, empty_set ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  resolution: (158) {G1,W3,D2,L1,V0,M1}  { empty_set ==> skol3 }.
% 0.78/1.16  parent0[0]: (157) {G2,W6,D2,L2,V0,M2}  { ! subset( skol3, skol3 ), 
% 0.78/1.16    empty_set ==> skol3 }.
% 0.78/1.16  parent1[0]: (2) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16     X := skol3
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (159) {G1,W3,D2,L1,V0,M1}  { skol3 ==> empty_set }.
% 0.78/1.16  parent0[0]: (158) {G1,W3,D2,L1,V0,M1}  { empty_set ==> skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (33) {G4,W3,D2,L1,V0,M1} R(6,32);d(26);r(2) { skol3 ==> 
% 0.78/1.16    empty_set }.
% 0.78/1.16  parent0: (159) {G1,W3,D2,L1,V0,M1}  { skol3 ==> empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16     0 ==> 0
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqswap: (160) {G0,W7,D3,L2,V2,M2}  { ! empty_set = X, subset( X, singleton
% 0.78/1.16    ( Y ) ) }.
% 0.78/1.16  parent0[0]: (12) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, 
% 0.78/1.16    singleton( Y ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := X
% 0.78/1.16     Y := Y
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  resolution: (163) {G1,W6,D2,L2,V0,M2}  { alpha1( skol3, skol4 ), ! 
% 0.78/1.16    empty_set = skol3 }.
% 0.78/1.16  parent0[1]: (6) {G0,W7,D3,L2,V0,M2} I { alpha1( skol3, skol4 ), ! subset( 
% 0.78/1.16    skol3, singleton( skol4 ) ) }.
% 0.78/1.16  parent1[1]: (160) {G0,W7,D3,L2,V2,M2}  { ! empty_set = X, subset( X, 
% 0.78/1.16    singleton( Y ) ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16     X := skol3
% 0.78/1.16     Y := skol4
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  paramod: (165) {G2,W6,D2,L2,V0,M2}  { ! empty_set = empty_set, alpha1( 
% 0.78/1.16    skol3, skol4 ) }.
% 0.78/1.16  parent0[0]: (33) {G4,W3,D2,L1,V0,M1} R(6,32);d(26);r(2) { skol3 ==> 
% 0.78/1.16    empty_set }.
% 0.78/1.16  parent1[1; 3]: (163) {G1,W6,D2,L2,V0,M2}  { alpha1( skol3, skol4 ), ! 
% 0.78/1.16    empty_set = skol3 }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  paramod: (167) {G3,W6,D2,L2,V0,M2}  { alpha1( empty_set, skol4 ), ! 
% 0.78/1.16    empty_set = empty_set }.
% 0.78/1.16  parent0[0]: (33) {G4,W3,D2,L1,V0,M1} R(6,32);d(26);r(2) { skol3 ==> 
% 0.78/1.16    empty_set }.
% 0.78/1.16  parent1[1; 1]: (165) {G2,W6,D2,L2,V0,M2}  { ! empty_set = empty_set, alpha1
% 0.78/1.16    ( skol3, skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  eqrefl: (168) {G0,W3,D2,L1,V0,M1}  { alpha1( empty_set, skol4 ) }.
% 0.78/1.16  parent0[1]: (167) {G3,W6,D2,L2,V0,M2}  { alpha1( empty_set, skol4 ), ! 
% 0.78/1.16    empty_set = empty_set }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  resolution: (169) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.78/1.16  parent0[0]: (14) {G1,W3,D2,L1,V1,M1} Q(8) { ! alpha1( empty_set, X ) }.
% 0.78/1.16  parent1[0]: (168) {G0,W3,D2,L1,V0,M1}  { alpha1( empty_set, skol4 ) }.
% 0.78/1.16  substitution0:
% 0.78/1.16     X := skol4
% 0.78/1.16  end
% 0.78/1.16  substitution1:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  subsumption: (35) {G5,W0,D0,L0,V0,M0} R(6,12);d(33);d(33);q;r(14) {  }.
% 0.78/1.16  parent0: (169) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.78/1.16  substitution0:
% 0.78/1.16  end
% 0.78/1.16  permutation0:
% 0.78/1.16  end
% 0.78/1.16  
% 0.78/1.16  Proof check complete!
% 0.78/1.16  
% 0.78/1.16  Memory use:
% 0.78/1.16  
% 0.78/1.16  space for terms:        500
% 0.78/1.16  space for clauses:      1851
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  clauses generated:      70
% 0.78/1.16  clauses kept:           36
% 0.78/1.16  clauses selected:       16
% 0.78/1.16  clauses deleted:        0
% 0.78/1.16  clauses inuse deleted:  0
% 0.78/1.16  
% 0.78/1.16  subsentry:          1260
% 0.78/1.16  literals s-matched: 261
% 0.78/1.16  literals matched:   261
% 0.78/1.16  full subsumption:   0
% 0.78/1.16  
% 0.78/1.16  checksum:           537548880
% 0.78/1.16  
% 0.78/1.16  
% 0.78/1.16  Bliksem ended
%------------------------------------------------------------------------------