TSTP Solution File: SEU153+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SEU153+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 17:51:15 EDT 2023

% Result   : Theorem 0.20s 0.42s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : SEU153+1 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.35  % Computer : n018.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Wed Aug 23 12:52:11 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.20/0.42  Command-line arguments: --no-flatten-goal
% 0.20/0.42  
% 0.20/0.42  % SZS status Theorem
% 0.20/0.42  
% 0.20/0.43  % SZS output start Proof
% 0.20/0.43  Take the following subset of the input axioms:
% 0.20/0.43    fof(antisymmetry_r2_hidden, axiom, ![A, B]: (in(A, B) => ~in(B, A))).
% 0.20/0.43    fof(commutativity_k3_xboole_0, axiom, ![A3, B2]: set_intersection2(A3, B2)=set_intersection2(B2, A3)).
% 0.20/0.43    fof(d1_tarski, axiom, ![A2, B2]: (B2=singleton(A2) <=> ![C]: (in(C, B2) <=> C=A2))).
% 0.20/0.43    fof(d1_xboole_0, axiom, ![A3]: (A3=empty_set <=> ![B2]: ~in(B2, A3))).
% 0.20/0.43    fof(d3_xboole_0, axiom, ![B2, A2_2, C2]: (C2=set_intersection2(A2_2, B2) <=> ![D]: (in(D, C2) <=> (in(D, A2_2) & in(D, B2))))).
% 0.20/0.43    fof(d7_xboole_0, axiom, ![B2, A2_2]: (disjoint(A2_2, B2) <=> set_intersection2(A2_2, B2)=empty_set)).
% 0.20/0.43    fof(l25_zfmisc_1, conjecture, ![A3, B2]: ~(disjoint(singleton(A3), B2) & in(A3, B2))).
% 0.20/0.43  
% 0.20/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.43    fresh(y, y, x1...xn) = u
% 0.20/0.43    C => fresh(s, t, x1...xn) = v
% 0.20/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.43  variables of u and v.
% 0.20/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.43  input problem has no model of domain size 1).
% 0.20/0.43  
% 0.20/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.43  
% 0.20/0.43  Axiom 1 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X).
% 0.20/0.43  Axiom 2 (l25_zfmisc_1): in(a3, b) = true2.
% 0.20/0.43  Axiom 3 (l25_zfmisc_1_1): disjoint(singleton(a3), b) = true2.
% 0.20/0.43  Axiom 4 (d1_tarski_2): fresh18(X, X, Y, Z) = true2.
% 0.20/0.43  Axiom 5 (d3_xboole_0_2): fresh13(X, X, Y, Z) = true2.
% 0.20/0.43  Axiom 6 (d7_xboole_0_1): fresh6(X, X, Y, Z) = empty_set.
% 0.20/0.43  Axiom 7 (d1_tarski_2): fresh18(X, singleton(Y), Y, X) = in(Y, X).
% 0.20/0.43  Axiom 8 (d3_xboole_0_3): fresh12(X, X, Y, Z, W) = equiv(Y, Z, W).
% 0.20/0.43  Axiom 9 (d3_xboole_0_3): fresh11(X, X, Y, Z, W) = true2.
% 0.20/0.43  Axiom 10 (d3_xboole_0_2): fresh14(X, X, Y, Z, W, V) = in(V, W).
% 0.20/0.43  Axiom 11 (d7_xboole_0_1): fresh6(disjoint(X, Y), true2, X, Y) = set_intersection2(X, Y).
% 0.20/0.43  Axiom 12 (d3_xboole_0_3): fresh12(in(X, Y), true2, Z, Y, X) = fresh11(in(X, Z), true2, Z, Y, X).
% 0.20/0.43  Axiom 13 (d3_xboole_0_2): fresh14(equiv(X, Y, Z), true2, X, Y, W, Z) = fresh13(W, set_intersection2(X, Y), W, Z).
% 0.20/0.43  
% 0.20/0.43  Goal 1 (d1_xboole_0_1): tuple2(X, in(Y, X)) = tuple2(empty_set, true2).
% 0.20/0.43  The goal is true when:
% 0.20/0.43    X = empty_set
% 0.20/0.43    Y = a3
% 0.20/0.43  
% 0.20/0.43  Proof:
% 0.20/0.43    tuple2(empty_set, in(a3, empty_set))
% 0.20/0.43  = { by axiom 10 (d3_xboole_0_2) R->L }
% 0.20/0.43    tuple2(empty_set, fresh14(true2, true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 9 (d3_xboole_0_3) R->L }
% 0.20/0.43    tuple2(empty_set, fresh14(fresh11(true2, true2, b, singleton(a3), a3), true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 2 (l25_zfmisc_1) R->L }
% 0.20/0.43    tuple2(empty_set, fresh14(fresh11(in(a3, b), true2, b, singleton(a3), a3), true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 12 (d3_xboole_0_3) R->L }
% 0.20/0.43    tuple2(empty_set, fresh14(fresh12(in(a3, singleton(a3)), true2, b, singleton(a3), a3), true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 7 (d1_tarski_2) R->L }
% 0.20/0.43    tuple2(empty_set, fresh14(fresh12(fresh18(singleton(a3), singleton(a3), a3, singleton(a3)), true2, b, singleton(a3), a3), true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 4 (d1_tarski_2) }
% 0.20/0.43    tuple2(empty_set, fresh14(fresh12(true2, true2, b, singleton(a3), a3), true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 8 (d3_xboole_0_3) }
% 0.20/0.43    tuple2(empty_set, fresh14(equiv(b, singleton(a3), a3), true2, b, singleton(a3), empty_set, a3))
% 0.20/0.43  = { by axiom 13 (d3_xboole_0_2) }
% 0.20/0.43    tuple2(empty_set, fresh13(empty_set, set_intersection2(b, singleton(a3)), empty_set, a3))
% 0.20/0.43  = { by axiom 1 (commutativity_k3_xboole_0) R->L }
% 0.20/0.43    tuple2(empty_set, fresh13(empty_set, set_intersection2(singleton(a3), b), empty_set, a3))
% 0.20/0.43  = { by axiom 11 (d7_xboole_0_1) R->L }
% 0.20/0.43    tuple2(empty_set, fresh13(empty_set, fresh6(disjoint(singleton(a3), b), true2, singleton(a3), b), empty_set, a3))
% 0.20/0.43  = { by axiom 3 (l25_zfmisc_1_1) }
% 0.20/0.43    tuple2(empty_set, fresh13(empty_set, fresh6(true2, true2, singleton(a3), b), empty_set, a3))
% 0.20/0.43  = { by axiom 6 (d7_xboole_0_1) }
% 0.20/0.43    tuple2(empty_set, fresh13(empty_set, empty_set, empty_set, a3))
% 0.20/0.43  = { by axiom 5 (d3_xboole_0_2) }
% 0.20/0.43    tuple2(empty_set, true2)
% 0.20/0.43  % SZS output end Proof
% 0.20/0.43  
% 0.20/0.43  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------