TSTP Solution File: SEU153+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SEU153+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art02.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Thu Dec 30 01:19:46 EST 2010

% Result   : Theorem 0.91s
% Output   : Solution 0.91s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP21524/SEU153+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... found
% SZS status THM for /tmp/SystemOnTPTP21524/SEU153+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP21524/SEU153+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 21620
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.02 WC
% # Preprocessing time     : 0.012 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(3, axiom,![X1]:![X2]:(X2=singleton(X1)<=>![X3]:(in(X3,X2)<=>X3=X1)),file('/tmp/SRASS.s.p', d1_tarski)).
% fof(4, axiom,![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1),file('/tmp/SRASS.s.p', commutativity_k3_xboole_0)).
% fof(6, axiom,![X1]:![X2]:![X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))),file('/tmp/SRASS.s.p', d3_xboole_0)).
% fof(7, axiom,![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))),file('/tmp/SRASS.s.p', d1_xboole_0)).
% fof(8, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set),file('/tmp/SRASS.s.p', d7_xboole_0)).
% fof(15, conjecture,![X1]:![X2]:~((disjoint(singleton(X1),X2)&in(X1,X2))),file('/tmp/SRASS.s.p', l25_zfmisc_1)).
% fof(16, negated_conjecture,~(![X1]:![X2]:~((disjoint(singleton(X1),X2)&in(X1,X2)))),inference(assume_negation,[status(cth)],[15])).
% fof(18, plain,![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))),inference(fof_simplification,[status(thm)],[7,theory(equality)])).
% fof(26, plain,![X1]:![X2]:((~(X2=singleton(X1))|![X3]:((~(in(X3,X2))|X3=X1)&(~(X3=X1)|in(X3,X2))))&(?[X3]:((~(in(X3,X2))|~(X3=X1))&(in(X3,X2)|X3=X1))|X2=singleton(X1))),inference(fof_nnf,[status(thm)],[3])).
% fof(27, plain,![X4]:![X5]:((~(X5=singleton(X4))|![X6]:((~(in(X6,X5))|X6=X4)&(~(X6=X4)|in(X6,X5))))&(?[X7]:((~(in(X7,X5))|~(X7=X4))&(in(X7,X5)|X7=X4))|X5=singleton(X4))),inference(variable_rename,[status(thm)],[26])).
% fof(28, plain,![X4]:![X5]:((~(X5=singleton(X4))|![X6]:((~(in(X6,X5))|X6=X4)&(~(X6=X4)|in(X6,X5))))&(((~(in(esk1_2(X4,X5),X5))|~(esk1_2(X4,X5)=X4))&(in(esk1_2(X4,X5),X5)|esk1_2(X4,X5)=X4))|X5=singleton(X4))),inference(skolemize,[status(esa)],[27])).
% fof(29, plain,![X4]:![X5]:![X6]:((((~(in(X6,X5))|X6=X4)&(~(X6=X4)|in(X6,X5)))|~(X5=singleton(X4)))&(((~(in(esk1_2(X4,X5),X5))|~(esk1_2(X4,X5)=X4))&(in(esk1_2(X4,X5),X5)|esk1_2(X4,X5)=X4))|X5=singleton(X4))),inference(shift_quantors,[status(thm)],[28])).
% fof(30, plain,![X4]:![X5]:![X6]:((((~(in(X6,X5))|X6=X4)|~(X5=singleton(X4)))&((~(X6=X4)|in(X6,X5))|~(X5=singleton(X4))))&(((~(in(esk1_2(X4,X5),X5))|~(esk1_2(X4,X5)=X4))|X5=singleton(X4))&((in(esk1_2(X4,X5),X5)|esk1_2(X4,X5)=X4)|X5=singleton(X4)))),inference(distribute,[status(thm)],[29])).
% cnf(33,plain,(in(X3,X1)|X1!=singleton(X2)|X3!=X2),inference(split_conjunct,[status(thm)],[30])).
% cnf(34,plain,(X3=X2|X1!=singleton(X2)|~in(X3,X1)),inference(split_conjunct,[status(thm)],[30])).
% fof(35, plain,![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3),inference(variable_rename,[status(thm)],[4])).
% cnf(36,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)),inference(split_conjunct,[status(thm)],[35])).
% fof(39, plain,![X1]:![X2]:![X3]:((~(X3=set_intersection2(X1,X2))|![X4]:((~(in(X4,X3))|(in(X4,X1)&in(X4,X2)))&((~(in(X4,X1))|~(in(X4,X2)))|in(X4,X3))))&(?[X4]:((~(in(X4,X3))|(~(in(X4,X1))|~(in(X4,X2))))&(in(X4,X3)|(in(X4,X1)&in(X4,X2))))|X3=set_intersection2(X1,X2))),inference(fof_nnf,[status(thm)],[6])).
% fof(40, plain,![X5]:![X6]:![X7]:((~(X7=set_intersection2(X5,X6))|![X8]:((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))))&(?[X9]:((~(in(X9,X7))|(~(in(X9,X5))|~(in(X9,X6))))&(in(X9,X7)|(in(X9,X5)&in(X9,X6))))|X7=set_intersection2(X5,X6))),inference(variable_rename,[status(thm)],[39])).
% fof(41, plain,![X5]:![X6]:![X7]:((~(X7=set_intersection2(X5,X6))|![X8]:((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))))&(((~(in(esk2_3(X5,X6,X7),X7))|(~(in(esk2_3(X5,X6,X7),X5))|~(in(esk2_3(X5,X6,X7),X6))))&(in(esk2_3(X5,X6,X7),X7)|(in(esk2_3(X5,X6,X7),X5)&in(esk2_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))),inference(skolemize,[status(esa)],[40])).
% fof(42, plain,![X5]:![X6]:![X7]:![X8]:((((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7)))|~(X7=set_intersection2(X5,X6)))&(((~(in(esk2_3(X5,X6,X7),X7))|(~(in(esk2_3(X5,X6,X7),X5))|~(in(esk2_3(X5,X6,X7),X6))))&(in(esk2_3(X5,X6,X7),X7)|(in(esk2_3(X5,X6,X7),X5)&in(esk2_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))),inference(shift_quantors,[status(thm)],[41])).
% fof(43, plain,![X5]:![X6]:![X7]:![X8]:(((((in(X8,X5)|~(in(X8,X7)))|~(X7=set_intersection2(X5,X6)))&((in(X8,X6)|~(in(X8,X7)))|~(X7=set_intersection2(X5,X6))))&(((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))|~(X7=set_intersection2(X5,X6))))&(((~(in(esk2_3(X5,X6,X7),X7))|(~(in(esk2_3(X5,X6,X7),X5))|~(in(esk2_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))&(((in(esk2_3(X5,X6,X7),X5)|in(esk2_3(X5,X6,X7),X7))|X7=set_intersection2(X5,X6))&((in(esk2_3(X5,X6,X7),X6)|in(esk2_3(X5,X6,X7),X7))|X7=set_intersection2(X5,X6))))),inference(distribute,[status(thm)],[42])).
% cnf(44,plain,(X1=set_intersection2(X2,X3)|in(esk2_3(X2,X3,X1),X1)|in(esk2_3(X2,X3,X1),X3)),inference(split_conjunct,[status(thm)],[43])).
% cnf(47,plain,(in(X4,X1)|X1!=set_intersection2(X2,X3)|~in(X4,X3)|~in(X4,X2)),inference(split_conjunct,[status(thm)],[43])).
% cnf(48,plain,(in(X4,X3)|X1!=set_intersection2(X2,X3)|~in(X4,X1)),inference(split_conjunct,[status(thm)],[43])).
% fof(50, plain,![X1]:((~(X1=empty_set)|![X2]:~(in(X2,X1)))&(?[X2]:in(X2,X1)|X1=empty_set)),inference(fof_nnf,[status(thm)],[18])).
% fof(51, plain,![X3]:((~(X3=empty_set)|![X4]:~(in(X4,X3)))&(?[X5]:in(X5,X3)|X3=empty_set)),inference(variable_rename,[status(thm)],[50])).
% fof(52, plain,![X3]:((~(X3=empty_set)|![X4]:~(in(X4,X3)))&(in(esk3_1(X3),X3)|X3=empty_set)),inference(skolemize,[status(esa)],[51])).
% fof(53, plain,![X3]:![X4]:((~(in(X4,X3))|~(X3=empty_set))&(in(esk3_1(X3),X3)|X3=empty_set)),inference(shift_quantors,[status(thm)],[52])).
% cnf(54,plain,(X1=empty_set|in(esk3_1(X1),X1)),inference(split_conjunct,[status(thm)],[53])).
% cnf(55,plain,(X1!=empty_set|~in(X2,X1)),inference(split_conjunct,[status(thm)],[53])).
% fof(56, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_intersection2(X1,X2)=empty_set)&(~(set_intersection2(X1,X2)=empty_set)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[8])).
% fof(57, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_intersection2(X3,X4)=empty_set)&(~(set_intersection2(X3,X4)=empty_set)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[56])).
% cnf(59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)),inference(split_conjunct,[status(thm)],[57])).
% fof(70, negated_conjecture,?[X1]:?[X2]:(disjoint(singleton(X1),X2)&in(X1,X2)),inference(fof_nnf,[status(thm)],[16])).
% fof(71, negated_conjecture,?[X3]:?[X4]:(disjoint(singleton(X3),X4)&in(X3,X4)),inference(variable_rename,[status(thm)],[70])).
% fof(72, negated_conjecture,(disjoint(singleton(esk6_0),esk7_0)&in(esk6_0,esk7_0)),inference(skolemize,[status(esa)],[71])).
% cnf(73,negated_conjecture,(in(esk6_0,esk7_0)),inference(split_conjunct,[status(thm)],[72])).
% cnf(74,negated_conjecture,(disjoint(singleton(esk6_0),esk7_0)),inference(split_conjunct,[status(thm)],[72])).
% cnf(75,plain,(in(X1,X2)|singleton(X1)!=X2),inference(er,[status(thm)],[33,theory(equality)])).
% cnf(79,plain,(in(X1,singleton(X1))),inference(er,[status(thm)],[75,theory(equality)])).
% cnf(80,negated_conjecture,(set_intersection2(singleton(esk6_0),esk7_0)=empty_set),inference(spm,[status(thm)],[59,74,theory(equality)])).
% cnf(90,plain,(X1=esk3_1(X2)|empty_set=X2|singleton(X1)!=X2),inference(spm,[status(thm)],[34,54,theory(equality)])).
% cnf(94,plain,(in(X1,X2)|~in(X1,set_intersection2(X3,X2))),inference(er,[status(thm)],[48,theory(equality)])).
% cnf(105,plain,(in(X1,set_intersection2(X2,X3))|~in(X1,X3)|~in(X1,X2)),inference(er,[status(thm)],[47,theory(equality)])).
% cnf(112,plain,(set_intersection2(X2,X3)=X1|in(esk2_3(X2,X3,X1),X3)|empty_set!=X1),inference(spm,[status(thm)],[55,44,theory(equality)])).
% cnf(133,plain,(empty_set!=singleton(X1)),inference(spm,[status(thm)],[55,79,theory(equality)])).
% cnf(136,negated_conjecture,(set_intersection2(esk7_0,singleton(esk6_0))=empty_set),inference(rw,[status(thm)],[80,36,theory(equality)])).
% cnf(156,plain,(X1=esk3_1(singleton(X1))|empty_set=singleton(X1)),inference(er,[status(thm)],[90,theory(equality)])).
% cnf(157,plain,(esk3_1(singleton(X1))=X1),inference(sr,[status(thm)],[156,133,theory(equality)])).
% cnf(163,plain,(set_intersection2(X2,X1)=X3|empty_set!=X1|empty_set!=X3),inference(spm,[status(thm)],[55,112,theory(equality)])).
% cnf(206,plain,(set_intersection2(X1,X2)=empty_set|empty_set!=X2),inference(er,[status(thm)],[163,theory(equality)])).
% cnf(213,plain,(in(X1,X2)|~in(X1,empty_set)|empty_set!=X2),inference(spm,[status(thm)],[94,206,theory(equality)])).
% cnf(223,plain,(empty_set!=X2|~in(X1,empty_set)),inference(csr,[status(thm)],[213,55])).
% fof(224, plain,(~(epred1_0)<=>![X2]:~(empty_set=X2)),introduced(definition),['split']).
% cnf(225,plain,(epred1_0|empty_set!=X2),inference(split_equiv,[status(thm)],[224])).
% fof(226, plain,(~(epred2_0)<=>![X1]:~(in(X1,empty_set))),introduced(definition),['split']).
% cnf(227,plain,(epred2_0|~in(X1,empty_set)),inference(split_equiv,[status(thm)],[226])).
% cnf(228,plain,(~epred2_0|~epred1_0),inference(apply_def,[status(esa)],[inference(apply_def,[status(esa)],[223,224,theory(equality)]),226,theory(equality)]),['split']).
% cnf(229,plain,(epred1_0),inference(er,[status(thm)],[225,theory(equality)])).
% cnf(231,plain,(~epred2_0|$false),inference(rw,[status(thm)],[228,229,theory(equality)])).
% cnf(232,plain,(~epred2_0),inference(cn,[status(thm)],[231,theory(equality)])).
% cnf(233,plain,(~in(X1,empty_set)),inference(sr,[status(thm)],[227,232,theory(equality)])).
% cnf(275,negated_conjecture,(in(X1,empty_set)|~in(X1,singleton(esk6_0))|~in(X1,esk7_0)),inference(spm,[status(thm)],[105,136,theory(equality)])).
% cnf(283,negated_conjecture,(~in(X1,singleton(esk6_0))|~in(X1,esk7_0)),inference(sr,[status(thm)],[275,233,theory(equality)])).
% cnf(286,negated_conjecture,(empty_set=singleton(esk6_0)|~in(esk3_1(singleton(esk6_0)),esk7_0)),inference(spm,[status(thm)],[283,54,theory(equality)])).
% cnf(295,negated_conjecture,(empty_set=singleton(esk6_0)|$false),inference(rw,[status(thm)],[inference(rw,[status(thm)],[286,157,theory(equality)]),73,theory(equality)])).
% cnf(296,negated_conjecture,(empty_set=singleton(esk6_0)),inference(cn,[status(thm)],[295,theory(equality)])).
% cnf(297,negated_conjecture,($false),inference(sr,[status(thm)],[296,133,theory(equality)])).
% cnf(298,negated_conjecture,($false),297,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 118
% # ...of these trivial                : 2
% # ...subsumed                        : 27
% # ...remaining for further processing: 89
% # Other redundant clauses eliminated : 4
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 0
% # Backward-rewritten                 : 2
% # Generated clauses                  : 188
% # ...of the previous two non-trivial : 149
% # Contextual simplify-reflections    : 5
% # Paramodulations                    : 167
% # Factorizations                     : 4
% # Equation resolutions               : 14
% # Current number of processed clauses: 62
% #    Positive orientable unit clauses: 13
% #    Positive unorientable unit clauses: 1
% #    Negative unit clauses           : 11
% #    Non-unit-clauses                : 37
% # Current number of unprocessed clauses: 77
% # ...number of literals in the above : 248
% # Clause-clause subsumption calls (NU) : 149
% # Rec. Clause-clause subsumption calls : 141
% # Unit Clause-clause subsumption calls : 32
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 8
% # Indexed BW rewrite successes       : 8
% # Backwards rewriting index:    47 leaves,   1.36+/-0.998 terms/leaf
% # Paramod-from index:           21 leaves,   1.19+/-0.587 terms/leaf
% # Paramod-into index:           46 leaves,   1.30+/-0.881 terms/leaf
% # -------------------------------------------------
% # User time              : 0.019 s
% # System time            : 0.003 s
% # Total time             : 0.022 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.10 CPU 0.19 WC
% FINAL PrfWatch: 0.10 CPU 0.19 WC
% SZS output end Solution for /tmp/SystemOnTPTP21524/SEU153+1.tptp
% 
%------------------------------------------------------------------------------