TSTP Solution File: SEU148+2 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SEU148+2 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art07.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 04:52:41 EST 2010

% Result   : Theorem 2.36s
% Output   : CNFRefutation 2.36s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :    7
% Syntax   : Number of formulae    :   45 (  18 unt;   0 def)
%            Number of atoms       :  137 (  74 equ)
%            Maximal formula atoms :   12 (   3 avg)
%            Number of connectives :  150 (  58   ~;  60   |;  26   &)
%                                         (   4 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   71 (   3 sgn  44   !;   6   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(9,axiom,
    ! [X1] : unordered_pair(X1,X1) = singleton(X1),
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',t69_enumset1) ).

fof(11,axiom,
    ! [X1,X2] :
      ( subset(X1,singleton(X2))
    <=> ( X1 = empty_set
        | X1 = singleton(X2) ) ),
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',l4_zfmisc_1) ).

fof(15,axiom,
    ! [X1,X2] : subset(X1,X1),
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',reflexivity_r1_tarski) ).

fof(24,conjecture,
    ! [X1,X2] :
      ( subset(singleton(X1),singleton(X2))
     => X1 = X2 ),
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',t6_zfmisc_1) ).

fof(64,axiom,
    ! [X1,X2] :
      ( subset(singleton(X1),X2)
    <=> in(X1,X2) ),
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',l2_zfmisc_1) ).

fof(66,axiom,
    ! [X1,X2] :
      ( X2 = singleton(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> X3 = X1 ) ),
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',d1_tarski) ).

fof(67,axiom,
    ! [X1] : singleton(X1) != empty_set,
    file('/tmp/tmpXkWtL9/sel_SEU148+2.p_1',l1_zfmisc_1) ).

fof(72,negated_conjecture,
    ~ ! [X1,X2] :
        ( subset(singleton(X1),singleton(X2))
       => X1 = X2 ),
    inference(assume_negation,[status(cth)],[24]) ).

fof(105,plain,
    ! [X2] : unordered_pair(X2,X2) = singleton(X2),
    inference(variable_rename,[status(thm)],[9]) ).

cnf(106,plain,
    unordered_pair(X1,X1) = singleton(X1),
    inference(split_conjunct,[status(thm)],[105]) ).

fof(109,plain,
    ! [X1,X2] :
      ( ( ~ subset(X1,singleton(X2))
        | X1 = empty_set
        | X1 = singleton(X2) )
      & ( ( X1 != empty_set
          & X1 != singleton(X2) )
        | subset(X1,singleton(X2)) ) ),
    inference(fof_nnf,[status(thm)],[11]) ).

fof(110,plain,
    ! [X3,X4] :
      ( ( ~ subset(X3,singleton(X4))
        | X3 = empty_set
        | X3 = singleton(X4) )
      & ( ( X3 != empty_set
          & X3 != singleton(X4) )
        | subset(X3,singleton(X4)) ) ),
    inference(variable_rename,[status(thm)],[109]) ).

fof(111,plain,
    ! [X3,X4] :
      ( ( ~ subset(X3,singleton(X4))
        | X3 = empty_set
        | X3 = singleton(X4) )
      & ( X3 != empty_set
        | subset(X3,singleton(X4)) )
      & ( X3 != singleton(X4)
        | subset(X3,singleton(X4)) ) ),
    inference(distribute,[status(thm)],[110]) ).

cnf(114,plain,
    ( X1 = singleton(X2)
    | X1 = empty_set
    | ~ subset(X1,singleton(X2)) ),
    inference(split_conjunct,[status(thm)],[111]) ).

fof(124,plain,
    ! [X3,X4] : subset(X3,X3),
    inference(variable_rename,[status(thm)],[15]) ).

cnf(125,plain,
    subset(X1,X1),
    inference(split_conjunct,[status(thm)],[124]) ).

fof(154,negated_conjecture,
    ? [X1,X2] :
      ( subset(singleton(X1),singleton(X2))
      & X1 != X2 ),
    inference(fof_nnf,[status(thm)],[72]) ).

fof(155,negated_conjecture,
    ? [X3,X4] :
      ( subset(singleton(X3),singleton(X4))
      & X3 != X4 ),
    inference(variable_rename,[status(thm)],[154]) ).

fof(156,negated_conjecture,
    ( subset(singleton(esk4_0),singleton(esk5_0))
    & esk4_0 != esk5_0 ),
    inference(skolemize,[status(esa)],[155]) ).

cnf(157,negated_conjecture,
    esk4_0 != esk5_0,
    inference(split_conjunct,[status(thm)],[156]) ).

cnf(158,negated_conjecture,
    subset(singleton(esk4_0),singleton(esk5_0)),
    inference(split_conjunct,[status(thm)],[156]) ).

fof(288,plain,
    ! [X1,X2] :
      ( ( ~ subset(singleton(X1),X2)
        | in(X1,X2) )
      & ( ~ in(X1,X2)
        | subset(singleton(X1),X2) ) ),
    inference(fof_nnf,[status(thm)],[64]) ).

fof(289,plain,
    ! [X3,X4] :
      ( ( ~ subset(singleton(X3),X4)
        | in(X3,X4) )
      & ( ~ in(X3,X4)
        | subset(singleton(X3),X4) ) ),
    inference(variable_rename,[status(thm)],[288]) ).

cnf(291,plain,
    ( in(X1,X2)
    | ~ subset(singleton(X1),X2) ),
    inference(split_conjunct,[status(thm)],[289]) ).

fof(294,plain,
    ! [X1,X2] :
      ( ( X2 != singleton(X1)
        | ! [X3] :
            ( ( ~ in(X3,X2)
              | X3 = X1 )
            & ( X3 != X1
              | in(X3,X2) ) ) )
      & ( ? [X3] :
            ( ( ~ in(X3,X2)
              | X3 != X1 )
            & ( in(X3,X2)
              | X3 = X1 ) )
        | X2 = singleton(X1) ) ),
    inference(fof_nnf,[status(thm)],[66]) ).

fof(295,plain,
    ! [X4,X5] :
      ( ( X5 != singleton(X4)
        | ! [X6] :
            ( ( ~ in(X6,X5)
              | X6 = X4 )
            & ( X6 != X4
              | in(X6,X5) ) ) )
      & ( ? [X7] :
            ( ( ~ in(X7,X5)
              | X7 != X4 )
            & ( in(X7,X5)
              | X7 = X4 ) )
        | X5 = singleton(X4) ) ),
    inference(variable_rename,[status(thm)],[294]) ).

fof(296,plain,
    ! [X4,X5] :
      ( ( X5 != singleton(X4)
        | ! [X6] :
            ( ( ~ in(X6,X5)
              | X6 = X4 )
            & ( X6 != X4
              | in(X6,X5) ) ) )
      & ( ( ( ~ in(esk12_2(X4,X5),X5)
            | esk12_2(X4,X5) != X4 )
          & ( in(esk12_2(X4,X5),X5)
            | esk12_2(X4,X5) = X4 ) )
        | X5 = singleton(X4) ) ),
    inference(skolemize,[status(esa)],[295]) ).

fof(297,plain,
    ! [X4,X5,X6] :
      ( ( ( ( ~ in(X6,X5)
            | X6 = X4 )
          & ( X6 != X4
            | in(X6,X5) ) )
        | X5 != singleton(X4) )
      & ( ( ( ~ in(esk12_2(X4,X5),X5)
            | esk12_2(X4,X5) != X4 )
          & ( in(esk12_2(X4,X5),X5)
            | esk12_2(X4,X5) = X4 ) )
        | X5 = singleton(X4) ) ),
    inference(shift_quantors,[status(thm)],[296]) ).

fof(298,plain,
    ! [X4,X5,X6] :
      ( ( ~ in(X6,X5)
        | X6 = X4
        | X5 != singleton(X4) )
      & ( X6 != X4
        | in(X6,X5)
        | X5 != singleton(X4) )
      & ( ~ in(esk12_2(X4,X5),X5)
        | esk12_2(X4,X5) != X4
        | X5 = singleton(X4) )
      & ( in(esk12_2(X4,X5),X5)
        | esk12_2(X4,X5) = X4
        | X5 = singleton(X4) ) ),
    inference(distribute,[status(thm)],[297]) ).

cnf(302,plain,
    ( X3 = X2
    | X1 != singleton(X2)
    | ~ in(X3,X1) ),
    inference(split_conjunct,[status(thm)],[298]) ).

fof(303,plain,
    ! [X2] : singleton(X2) != empty_set,
    inference(variable_rename,[status(thm)],[67]) ).

cnf(304,plain,
    singleton(X1) != empty_set,
    inference(split_conjunct,[status(thm)],[303]) ).

cnf(338,negated_conjecture,
    subset(unordered_pair(esk4_0,esk4_0),unordered_pair(esk5_0,esk5_0)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[158,106,theory(equality)]),106,theory(equality)]),
    [unfolding] ).

cnf(342,plain,
    ( in(X1,X2)
    | ~ subset(unordered_pair(X1,X1),X2) ),
    inference(rw,[status(thm)],[291,106,theory(equality)]),
    [unfolding] ).

cnf(344,plain,
    ( empty_set = X1
    | unordered_pair(X2,X2) = X1
    | ~ subset(X1,unordered_pair(X2,X2)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[114,106,theory(equality)]),106,theory(equality)]),
    [unfolding] ).

cnf(346,plain,
    ( X2 = X3
    | unordered_pair(X2,X2) != X1
    | ~ in(X3,X1) ),
    inference(rw,[status(thm)],[302,106,theory(equality)]),
    [unfolding] ).

cnf(349,plain,
    unordered_pair(X1,X1) != empty_set,
    inference(rw,[status(thm)],[304,106,theory(equality)]),
    [unfolding] ).

cnf(563,negated_conjecture,
    ( unordered_pair(esk5_0,esk5_0) = unordered_pair(esk4_0,esk4_0)
    | empty_set = unordered_pair(esk4_0,esk4_0) ),
    inference(spm,[status(thm)],[344,338,theory(equality)]) ).

cnf(569,negated_conjecture,
    unordered_pair(esk5_0,esk5_0) = unordered_pair(esk4_0,esk4_0),
    inference(sr,[status(thm)],[563,349,theory(equality)]) ).

cnf(914,plain,
    ( X1 = X2
    | ~ in(X2,unordered_pair(X1,X1)) ),
    inference(er,[status(thm)],[346,theory(equality)]) ).

cnf(1305,negated_conjecture,
    ( in(esk5_0,X1)
    | ~ subset(unordered_pair(esk4_0,esk4_0),X1) ),
    inference(spm,[status(thm)],[342,569,theory(equality)]) ).

cnf(1464,negated_conjecture,
    in(esk5_0,unordered_pair(esk4_0,esk4_0)),
    inference(spm,[status(thm)],[1305,125,theory(equality)]) ).

cnf(36017,negated_conjecture,
    esk4_0 = esk5_0,
    inference(spm,[status(thm)],[914,1464,theory(equality)]) ).

cnf(36095,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[36017,157,theory(equality)]) ).

cnf(36096,negated_conjecture,
    $false,
    36095,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SEU/SEU148+2.p
% --creating new selector for []
% -running prover on /tmp/tmpXkWtL9/sel_SEU148+2.p_1 with time limit 29
% -prover status Theorem
% Problem SEU148+2.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SEU/SEU148+2.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SEU/SEU148+2.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------