TSTP Solution File: SEU147+2 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SEU147+2 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art04.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 04:52:25 EST 2010

% Result   : Theorem 21.09s
% Output   : CNFRefutation 21.09s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :   21
% Syntax   : Number of formulae    :  135 (  50 unt;   0 def)
%            Number of atoms       :  391 ( 163 equ)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives :  420 ( 164   ~; 173   |;  70   &)
%                                         (  10 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   1 con; 0-2 aty)
%            Number of variables   :  269 (  12 sgn 146   !;  12   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(2,axiom,
    ! [X1] : set_union2(X1,empty_set) = X1,
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t1_boole) ).

fof(9,axiom,
    ! [X1] : unordered_pair(X1,X1) = singleton(X1),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t69_enumset1) ).

fof(12,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_difference(X1,X2) = X1 ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t83_xboole_1) ).

fof(14,axiom,
    ! [X1,X2] : set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t40_xboole_1) ).

fof(17,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t3_boole) ).

fof(18,axiom,
    ! [X1] :
      ( subset(X1,empty_set)
     => X1 = empty_set ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t3_xboole_1) ).

fof(19,axiom,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t3_xboole_0) ).

fof(24,axiom,
    ! [X1,X2] :
      ( X2 = powerset(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> subset(X3,X1) ) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',d1_zfmisc_1) ).

fof(26,axiom,
    ! [X1,X2] : set_union2(X1,X2) = set_union2(X2,X1),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',commutativity_k2_xboole_0) ).

fof(28,axiom,
    ! [X1,X2] :
      ( set_difference(X1,X2) = empty_set
    <=> subset(X1,X2) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t37_xboole_1) ).

fof(32,axiom,
    ! [X1,X2] : subset(X1,set_union2(X1,X2)),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t7_xboole_1) ).

fof(41,axiom,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t48_xboole_1) ).

fof(43,conjecture,
    powerset(empty_set) = singleton(empty_set),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t1_zfmisc_1) ).

fof(45,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
     => disjoint(X2,X1) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',symmetry_r1_xboole_0) ).

fof(46,axiom,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',d1_xboole_0) ).

fof(49,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',commutativity_k3_xboole_0) ).

fof(58,axiom,
    ! [X1,X2] : set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',t39_xboole_1) ).

fof(63,axiom,
    ! [X1,X2] :
      ( subset(singleton(X1),X2)
    <=> in(X1,X2) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',l2_zfmisc_1) ).

fof(65,axiom,
    ! [X1,X2] :
      ( X2 = singleton(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> X3 = X1 ) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',d1_tarski) ).

fof(66,axiom,
    ! [X1] : singleton(X1) != empty_set,
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',l1_zfmisc_1) ).

fof(68,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/tmp/tmpxVJoJh/sel_SEU147+2.p_1',d3_tarski) ).

fof(71,negated_conjecture,
    powerset(empty_set) != singleton(empty_set),
    inference(assume_negation,[status(cth)],[43]) ).

fof(75,plain,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    inference(fof_simplification,[status(thm)],[19,theory(equality)]) ).

fof(79,negated_conjecture,
    powerset(empty_set) != singleton(empty_set),
    inference(fof_simplification,[status(thm)],[71,theory(equality)]) ).

fof(80,plain,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[46,theory(equality)]) ).

fof(86,plain,
    ! [X2] : set_union2(X2,empty_set) = X2,
    inference(variable_rename,[status(thm)],[2]) ).

cnf(87,plain,
    set_union2(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[86]) ).

fof(105,plain,
    ! [X2] : unordered_pair(X2,X2) = singleton(X2),
    inference(variable_rename,[status(thm)],[9]) ).

cnf(106,plain,
    unordered_pair(X1,X1) = singleton(X1),
    inference(split_conjunct,[status(thm)],[105]) ).

fof(115,plain,
    ! [X1,X2] :
      ( ( ~ disjoint(X1,X2)
        | set_difference(X1,X2) = X1 )
      & ( set_difference(X1,X2) != X1
        | disjoint(X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[12]) ).

fof(116,plain,
    ! [X3,X4] :
      ( ( ~ disjoint(X3,X4)
        | set_difference(X3,X4) = X3 )
      & ( set_difference(X3,X4) != X3
        | disjoint(X3,X4) ) ),
    inference(variable_rename,[status(thm)],[115]) ).

cnf(118,plain,
    ( set_difference(X1,X2) = X1
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[116]) ).

fof(122,plain,
    ! [X3,X4] : set_difference(set_union2(X3,X4),X4) = set_difference(X3,X4),
    inference(variable_rename,[status(thm)],[14]) ).

cnf(123,plain,
    set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    inference(split_conjunct,[status(thm)],[122]) ).

fof(128,plain,
    ! [X2] : set_difference(X2,empty_set) = X2,
    inference(variable_rename,[status(thm)],[17]) ).

cnf(129,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[128]) ).

fof(130,plain,
    ! [X1] :
      ( ~ subset(X1,empty_set)
      | X1 = empty_set ),
    inference(fof_nnf,[status(thm)],[18]) ).

fof(131,plain,
    ! [X2] :
      ( ~ subset(X2,empty_set)
      | X2 = empty_set ),
    inference(variable_rename,[status(thm)],[130]) ).

cnf(132,plain,
    ( X1 = empty_set
    | ~ subset(X1,empty_set) ),
    inference(split_conjunct,[status(thm)],[131]) ).

fof(133,plain,
    ! [X1,X2] :
      ( ( disjoint(X1,X2)
        | ? [X3] :
            ( in(X3,X1)
            & in(X3,X2) ) )
      & ( ! [X3] :
            ( ~ in(X3,X1)
            | ~ in(X3,X2) )
        | ~ disjoint(X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[75]) ).

fof(134,plain,
    ! [X4,X5] :
      ( ( disjoint(X4,X5)
        | ? [X6] :
            ( in(X6,X4)
            & in(X6,X5) ) )
      & ( ! [X7] :
            ( ~ in(X7,X4)
            | ~ in(X7,X5) )
        | ~ disjoint(X4,X5) ) ),
    inference(variable_rename,[status(thm)],[133]) ).

fof(135,plain,
    ! [X4,X5] :
      ( ( disjoint(X4,X5)
        | ( in(esk2_2(X4,X5),X4)
          & in(esk2_2(X4,X5),X5) ) )
      & ( ! [X7] :
            ( ~ in(X7,X4)
            | ~ in(X7,X5) )
        | ~ disjoint(X4,X5) ) ),
    inference(skolemize,[status(esa)],[134]) ).

fof(136,plain,
    ! [X4,X5,X7] :
      ( ( ~ in(X7,X4)
        | ~ in(X7,X5)
        | ~ disjoint(X4,X5) )
      & ( disjoint(X4,X5)
        | ( in(esk2_2(X4,X5),X4)
          & in(esk2_2(X4,X5),X5) ) ) ),
    inference(shift_quantors,[status(thm)],[135]) ).

fof(137,plain,
    ! [X4,X5,X7] :
      ( ( ~ in(X7,X4)
        | ~ in(X7,X5)
        | ~ disjoint(X4,X5) )
      & ( in(esk2_2(X4,X5),X4)
        | disjoint(X4,X5) )
      & ( in(esk2_2(X4,X5),X5)
        | disjoint(X4,X5) ) ),
    inference(distribute,[status(thm)],[136]) ).

cnf(138,plain,
    ( disjoint(X1,X2)
    | in(esk2_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[137]) ).

cnf(139,plain,
    ( disjoint(X1,X2)
    | in(esk2_2(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[137]) ).

fof(154,plain,
    ! [X1,X2] :
      ( ( X2 != powerset(X1)
        | ! [X3] :
            ( ( ~ in(X3,X2)
              | subset(X3,X1) )
            & ( ~ subset(X3,X1)
              | in(X3,X2) ) ) )
      & ( ? [X3] :
            ( ( ~ in(X3,X2)
              | ~ subset(X3,X1) )
            & ( in(X3,X2)
              | subset(X3,X1) ) )
        | X2 = powerset(X1) ) ),
    inference(fof_nnf,[status(thm)],[24]) ).

fof(155,plain,
    ! [X4,X5] :
      ( ( X5 != powerset(X4)
        | ! [X6] :
            ( ( ~ in(X6,X5)
              | subset(X6,X4) )
            & ( ~ subset(X6,X4)
              | in(X6,X5) ) ) )
      & ( ? [X7] :
            ( ( ~ in(X7,X5)
              | ~ subset(X7,X4) )
            & ( in(X7,X5)
              | subset(X7,X4) ) )
        | X5 = powerset(X4) ) ),
    inference(variable_rename,[status(thm)],[154]) ).

fof(156,plain,
    ! [X4,X5] :
      ( ( X5 != powerset(X4)
        | ! [X6] :
            ( ( ~ in(X6,X5)
              | subset(X6,X4) )
            & ( ~ subset(X6,X4)
              | in(X6,X5) ) ) )
      & ( ( ( ~ in(esk4_2(X4,X5),X5)
            | ~ subset(esk4_2(X4,X5),X4) )
          & ( in(esk4_2(X4,X5),X5)
            | subset(esk4_2(X4,X5),X4) ) )
        | X5 = powerset(X4) ) ),
    inference(skolemize,[status(esa)],[155]) ).

fof(157,plain,
    ! [X4,X5,X6] :
      ( ( ( ( ~ in(X6,X5)
            | subset(X6,X4) )
          & ( ~ subset(X6,X4)
            | in(X6,X5) ) )
        | X5 != powerset(X4) )
      & ( ( ( ~ in(esk4_2(X4,X5),X5)
            | ~ subset(esk4_2(X4,X5),X4) )
          & ( in(esk4_2(X4,X5),X5)
            | subset(esk4_2(X4,X5),X4) ) )
        | X5 = powerset(X4) ) ),
    inference(shift_quantors,[status(thm)],[156]) ).

fof(158,plain,
    ! [X4,X5,X6] :
      ( ( ~ in(X6,X5)
        | subset(X6,X4)
        | X5 != powerset(X4) )
      & ( ~ subset(X6,X4)
        | in(X6,X5)
        | X5 != powerset(X4) )
      & ( ~ in(esk4_2(X4,X5),X5)
        | ~ subset(esk4_2(X4,X5),X4)
        | X5 = powerset(X4) )
      & ( in(esk4_2(X4,X5),X5)
        | subset(esk4_2(X4,X5),X4)
        | X5 = powerset(X4) ) ),
    inference(distribute,[status(thm)],[157]) ).

cnf(161,plain,
    ( in(X3,X1)
    | X1 != powerset(X2)
    | ~ subset(X3,X2) ),
    inference(split_conjunct,[status(thm)],[158]) ).

cnf(162,plain,
    ( subset(X3,X2)
    | X1 != powerset(X2)
    | ~ in(X3,X1) ),
    inference(split_conjunct,[status(thm)],[158]) ).

fof(165,plain,
    ! [X3,X4] : set_union2(X3,X4) = set_union2(X4,X3),
    inference(variable_rename,[status(thm)],[26]) ).

cnf(166,plain,
    set_union2(X1,X2) = set_union2(X2,X1),
    inference(split_conjunct,[status(thm)],[165]) ).

fof(169,plain,
    ! [X1,X2] :
      ( ( set_difference(X1,X2) != empty_set
        | subset(X1,X2) )
      & ( ~ subset(X1,X2)
        | set_difference(X1,X2) = empty_set ) ),
    inference(fof_nnf,[status(thm)],[28]) ).

fof(170,plain,
    ! [X3,X4] :
      ( ( set_difference(X3,X4) != empty_set
        | subset(X3,X4) )
      & ( ~ subset(X3,X4)
        | set_difference(X3,X4) = empty_set ) ),
    inference(variable_rename,[status(thm)],[169]) ).

cnf(171,plain,
    ( set_difference(X1,X2) = empty_set
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[170]) ).

fof(183,plain,
    ! [X3,X4] : subset(X3,set_union2(X3,X4)),
    inference(variable_rename,[status(thm)],[32]) ).

cnf(184,plain,
    subset(X1,set_union2(X1,X2)),
    inference(split_conjunct,[status(thm)],[183]) ).

fof(222,plain,
    ! [X3,X4] : set_difference(X3,set_difference(X3,X4)) = set_intersection2(X3,X4),
    inference(variable_rename,[status(thm)],[41]) ).

cnf(223,plain,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(split_conjunct,[status(thm)],[222]) ).

cnf(227,negated_conjecture,
    powerset(empty_set) != singleton(empty_set),
    inference(split_conjunct,[status(thm)],[79]) ).

fof(230,plain,
    ! [X1,X2] :
      ( ~ disjoint(X1,X2)
      | disjoint(X2,X1) ),
    inference(fof_nnf,[status(thm)],[45]) ).

fof(231,plain,
    ! [X3,X4] :
      ( ~ disjoint(X3,X4)
      | disjoint(X4,X3) ),
    inference(variable_rename,[status(thm)],[230]) ).

cnf(232,plain,
    ( disjoint(X1,X2)
    | ~ disjoint(X2,X1) ),
    inference(split_conjunct,[status(thm)],[231]) ).

fof(233,plain,
    ! [X1] :
      ( ( X1 != empty_set
        | ! [X2] : ~ in(X2,X1) )
      & ( ? [X2] : in(X2,X1)
        | X1 = empty_set ) ),
    inference(fof_nnf,[status(thm)],[80]) ).

fof(234,plain,
    ! [X3] :
      ( ( X3 != empty_set
        | ! [X4] : ~ in(X4,X3) )
      & ( ? [X5] : in(X5,X3)
        | X3 = empty_set ) ),
    inference(variable_rename,[status(thm)],[233]) ).

fof(235,plain,
    ! [X3] :
      ( ( X3 != empty_set
        | ! [X4] : ~ in(X4,X3) )
      & ( in(esk8_1(X3),X3)
        | X3 = empty_set ) ),
    inference(skolemize,[status(esa)],[234]) ).

fof(236,plain,
    ! [X3,X4] :
      ( ( ~ in(X4,X3)
        | X3 != empty_set )
      & ( in(esk8_1(X3),X3)
        | X3 = empty_set ) ),
    inference(shift_quantors,[status(thm)],[235]) ).

cnf(238,plain,
    ( X1 != empty_set
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[236]) ).

fof(248,plain,
    ! [X3,X4] : set_intersection2(X3,X4) = set_intersection2(X4,X3),
    inference(variable_rename,[status(thm)],[49]) ).

cnf(249,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[248]) ).

fof(268,plain,
    ! [X3,X4] : set_union2(X3,set_difference(X4,X3)) = set_union2(X3,X4),
    inference(variable_rename,[status(thm)],[58]) ).

cnf(269,plain,
    set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    inference(split_conjunct,[status(thm)],[268]) ).

fof(283,plain,
    ! [X1,X2] :
      ( ( ~ subset(singleton(X1),X2)
        | in(X1,X2) )
      & ( ~ in(X1,X2)
        | subset(singleton(X1),X2) ) ),
    inference(fof_nnf,[status(thm)],[63]) ).

fof(284,plain,
    ! [X3,X4] :
      ( ( ~ subset(singleton(X3),X4)
        | in(X3,X4) )
      & ( ~ in(X3,X4)
        | subset(singleton(X3),X4) ) ),
    inference(variable_rename,[status(thm)],[283]) ).

cnf(285,plain,
    ( subset(singleton(X1),X2)
    | ~ in(X1,X2) ),
    inference(split_conjunct,[status(thm)],[284]) ).

fof(289,plain,
    ! [X1,X2] :
      ( ( X2 != singleton(X1)
        | ! [X3] :
            ( ( ~ in(X3,X2)
              | X3 = X1 )
            & ( X3 != X1
              | in(X3,X2) ) ) )
      & ( ? [X3] :
            ( ( ~ in(X3,X2)
              | X3 != X1 )
            & ( in(X3,X2)
              | X3 = X1 ) )
        | X2 = singleton(X1) ) ),
    inference(fof_nnf,[status(thm)],[65]) ).

fof(290,plain,
    ! [X4,X5] :
      ( ( X5 != singleton(X4)
        | ! [X6] :
            ( ( ~ in(X6,X5)
              | X6 = X4 )
            & ( X6 != X4
              | in(X6,X5) ) ) )
      & ( ? [X7] :
            ( ( ~ in(X7,X5)
              | X7 != X4 )
            & ( in(X7,X5)
              | X7 = X4 ) )
        | X5 = singleton(X4) ) ),
    inference(variable_rename,[status(thm)],[289]) ).

fof(291,plain,
    ! [X4,X5] :
      ( ( X5 != singleton(X4)
        | ! [X6] :
            ( ( ~ in(X6,X5)
              | X6 = X4 )
            & ( X6 != X4
              | in(X6,X5) ) ) )
      & ( ( ( ~ in(esk10_2(X4,X5),X5)
            | esk10_2(X4,X5) != X4 )
          & ( in(esk10_2(X4,X5),X5)
            | esk10_2(X4,X5) = X4 ) )
        | X5 = singleton(X4) ) ),
    inference(skolemize,[status(esa)],[290]) ).

fof(292,plain,
    ! [X4,X5,X6] :
      ( ( ( ( ~ in(X6,X5)
            | X6 = X4 )
          & ( X6 != X4
            | in(X6,X5) ) )
        | X5 != singleton(X4) )
      & ( ( ( ~ in(esk10_2(X4,X5),X5)
            | esk10_2(X4,X5) != X4 )
          & ( in(esk10_2(X4,X5),X5)
            | esk10_2(X4,X5) = X4 ) )
        | X5 = singleton(X4) ) ),
    inference(shift_quantors,[status(thm)],[291]) ).

fof(293,plain,
    ! [X4,X5,X6] :
      ( ( ~ in(X6,X5)
        | X6 = X4
        | X5 != singleton(X4) )
      & ( X6 != X4
        | in(X6,X5)
        | X5 != singleton(X4) )
      & ( ~ in(esk10_2(X4,X5),X5)
        | esk10_2(X4,X5) != X4
        | X5 = singleton(X4) )
      & ( in(esk10_2(X4,X5),X5)
        | esk10_2(X4,X5) = X4
        | X5 = singleton(X4) ) ),
    inference(distribute,[status(thm)],[292]) ).

cnf(294,plain,
    ( X1 = singleton(X2)
    | esk10_2(X2,X1) = X2
    | in(esk10_2(X2,X1),X1) ),
    inference(split_conjunct,[status(thm)],[293]) ).

cnf(295,plain,
    ( X1 = singleton(X2)
    | esk10_2(X2,X1) != X2
    | ~ in(esk10_2(X2,X1),X1) ),
    inference(split_conjunct,[status(thm)],[293]) ).

cnf(297,plain,
    ( X3 = X2
    | X1 != singleton(X2)
    | ~ in(X3,X1) ),
    inference(split_conjunct,[status(thm)],[293]) ).

fof(298,plain,
    ! [X2] : singleton(X2) != empty_set,
    inference(variable_rename,[status(thm)],[66]) ).

cnf(299,plain,
    singleton(X1) != empty_set,
    inference(split_conjunct,[status(thm)],[298]) ).

fof(311,plain,
    ! [X1,X2] :
      ( ( ~ subset(X1,X2)
        | ! [X3] :
            ( ~ in(X3,X1)
            | in(X3,X2) ) )
      & ( ? [X3] :
            ( in(X3,X1)
            & ~ in(X3,X2) )
        | subset(X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[68]) ).

fof(312,plain,
    ! [X4,X5] :
      ( ( ~ subset(X4,X5)
        | ! [X6] :
            ( ~ in(X6,X4)
            | in(X6,X5) ) )
      & ( ? [X7] :
            ( in(X7,X4)
            & ~ in(X7,X5) )
        | subset(X4,X5) ) ),
    inference(variable_rename,[status(thm)],[311]) ).

fof(313,plain,
    ! [X4,X5] :
      ( ( ~ subset(X4,X5)
        | ! [X6] :
            ( ~ in(X6,X4)
            | in(X6,X5) ) )
      & ( ( in(esk12_2(X4,X5),X4)
          & ~ in(esk12_2(X4,X5),X5) )
        | subset(X4,X5) ) ),
    inference(skolemize,[status(esa)],[312]) ).

fof(314,plain,
    ! [X4,X5,X6] :
      ( ( ~ in(X6,X4)
        | in(X6,X5)
        | ~ subset(X4,X5) )
      & ( ( in(esk12_2(X4,X5),X4)
          & ~ in(esk12_2(X4,X5),X5) )
        | subset(X4,X5) ) ),
    inference(shift_quantors,[status(thm)],[313]) ).

fof(315,plain,
    ! [X4,X5,X6] :
      ( ( ~ in(X6,X4)
        | in(X6,X5)
        | ~ subset(X4,X5) )
      & ( in(esk12_2(X4,X5),X4)
        | subset(X4,X5) )
      & ( ~ in(esk12_2(X4,X5),X5)
        | subset(X4,X5) ) ),
    inference(distribute,[status(thm)],[314]) ).

cnf(317,plain,
    ( subset(X1,X2)
    | in(esk12_2(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[315]) ).

cnf(332,plain,
    ( unordered_pair(X2,X2) = X1
    | esk10_2(X2,X1) = X2
    | in(esk10_2(X2,X1),X1) ),
    inference(rw,[status(thm)],[294,106,theory(equality)]),
    [unfolding] ).

cnf(336,plain,
    ( subset(unordered_pair(X1,X1),X2)
    | ~ in(X1,X2) ),
    inference(rw,[status(thm)],[285,106,theory(equality)]),
    [unfolding] ).

cnf(339,plain,
    ( X2 = X3
    | unordered_pair(X2,X2) != X1
    | ~ in(X3,X1) ),
    inference(rw,[status(thm)],[297,106,theory(equality)]),
    [unfolding] ).

cnf(341,plain,
    ( unordered_pair(X2,X2) = X1
    | esk10_2(X2,X1) != X2
    | ~ in(esk10_2(X2,X1),X1) ),
    inference(rw,[status(thm)],[295,106,theory(equality)]),
    [unfolding] ).

cnf(342,plain,
    unordered_pair(X1,X1) != empty_set,
    inference(rw,[status(thm)],[299,106,theory(equality)]),
    [unfolding] ).

cnf(343,negated_conjecture,
    powerset(empty_set) != unordered_pair(empty_set,empty_set),
    inference(rw,[status(thm)],[227,106,theory(equality)]),
    [unfolding] ).

cnf(346,plain,
    set_difference(X1,set_difference(X1,X2)) = set_difference(X2,set_difference(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[249,223,theory(equality)]),223,theory(equality)]),
    [unfolding] ).

cnf(399,plain,
    set_difference(X1,set_union2(X1,X2)) = empty_set,
    inference(spm,[status(thm)],[171,184,theory(equality)]) ).

cnf(422,plain,
    set_difference(set_union2(X1,X2),set_difference(X2,X1)) = set_difference(X1,set_difference(X2,X1)),
    inference(spm,[status(thm)],[123,269,theory(equality)]) ).

cnf(423,plain,
    set_difference(set_union2(X2,X1),X2) = set_difference(X1,X2),
    inference(spm,[status(thm)],[123,166,theory(equality)]) ).

cnf(443,plain,
    ( X1 = X2
    | ~ in(X2,unordered_pair(X1,X1)) ),
    inference(er,[status(thm)],[339,theory(equality)]) ).

cnf(467,plain,
    ( subset(X1,X2)
    | empty_set != X1 ),
    inference(spm,[status(thm)],[238,317,theory(equality)]) ).

cnf(484,plain,
    ( set_difference(unordered_pair(X1,X1),X2) = empty_set
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[171,336,theory(equality)]) ).

cnf(531,plain,
    ( subset(esk2_2(X1,X2),X3)
    | disjoint(X1,X2)
    | powerset(X3) != X2 ),
    inference(spm,[status(thm)],[162,138,theory(equality)]) ).

cnf(534,plain,
    ( in(X1,X2)
    | powerset(set_union2(X1,X3)) != X2 ),
    inference(spm,[status(thm)],[161,184,theory(equality)]) ).

cnf(673,negated_conjecture,
    ( esk10_2(X1,powerset(empty_set)) = X1
    | in(esk10_2(X1,powerset(empty_set)),powerset(empty_set))
    | unordered_pair(X1,X1) != unordered_pair(empty_set,empty_set) ),
    inference(spm,[status(thm)],[343,332,theory(equality)]) ).

cnf(1275,plain,
    ( set_difference(X1,X2) = empty_set
    | empty_set != X1 ),
    inference(spm,[status(thm)],[171,467,theory(equality)]) ).

cnf(1349,plain,
    ( set_union2(X1,empty_set) = set_union2(X1,X2)
    | empty_set != X2 ),
    inference(spm,[status(thm)],[269,1275,theory(equality)]) ).

cnf(1382,plain,
    ( X1 = set_union2(X1,X2)
    | empty_set != X2 ),
    inference(rw,[status(thm)],[1349,87,theory(equality)]) ).

cnf(1405,plain,
    ( X1 = set_union2(X2,X1)
    | empty_set != X2 ),
    inference(spm,[status(thm)],[166,1382,theory(equality)]) ).

cnf(2272,plain,
    set_difference(set_union2(X1,X2),set_difference(X2,X1)) = set_difference(X1,set_difference(X1,set_union2(X1,X2))),
    inference(spm,[status(thm)],[346,423,theory(equality)]) ).

cnf(2313,plain,
    set_difference(X1,set_difference(X2,X1)) = set_difference(X1,set_difference(X1,set_union2(X1,X2))),
    inference(rw,[status(thm)],[2272,422,theory(equality)]) ).

cnf(2314,plain,
    set_difference(X1,set_difference(X2,X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[2313,399,theory(equality)]),129,theory(equality)]) ).

cnf(2615,plain,
    ( X1 = esk2_2(unordered_pair(X1,X1),X2)
    | disjoint(unordered_pair(X1,X1),X2) ),
    inference(spm,[status(thm)],[443,139,theory(equality)]) ).

cnf(3982,plain,
    ( empty_set = unordered_pair(X1,X1)
    | ~ in(X1,set_difference(X2,unordered_pair(X1,X1))) ),
    inference(spm,[status(thm)],[2314,484,theory(equality)]) ).

cnf(4042,plain,
    ~ in(X1,set_difference(X2,unordered_pair(X1,X1))),
    inference(sr,[status(thm)],[3982,342,theory(equality)]) ).

cnf(4989,plain,
    ( empty_set = esk2_2(X1,X2)
    | disjoint(X1,X2)
    | powerset(empty_set) != X2 ),
    inference(spm,[status(thm)],[132,531,theory(equality)]) ).

cnf(5010,plain,
    in(X1,powerset(set_union2(X1,X2))),
    inference(er,[status(thm)],[534,theory(equality)]) ).

cnf(5072,plain,
    ( in(X1,powerset(X2))
    | empty_set != X1 ),
    inference(spm,[status(thm)],[5010,1405,theory(equality)]) ).

cnf(13605,negated_conjecture,
    ( esk10_2(empty_set,powerset(empty_set)) = empty_set
    | in(esk10_2(empty_set,powerset(empty_set)),powerset(empty_set)) ),
    inference(er,[status(thm)],[673,theory(equality)]) ).

cnf(13635,negated_conjecture,
    in(esk10_2(empty_set,powerset(empty_set)),powerset(empty_set)),
    inference(csr,[status(thm)],[13605,5072]) ).

cnf(13642,negated_conjecture,
    ( unordered_pair(empty_set,empty_set) = powerset(empty_set)
    | esk10_2(empty_set,powerset(empty_set)) != empty_set ),
    inference(spm,[status(thm)],[341,13635,theory(equality)]) ).

cnf(13648,negated_conjecture,
    esk10_2(empty_set,powerset(empty_set)) != empty_set,
    inference(sr,[status(thm)],[13642,343,theory(equality)]) ).

cnf(374547,plain,
    ( empty_set = X1
    | disjoint(unordered_pair(X1,X1),X2)
    | powerset(empty_set) != X2 ),
    inference(spm,[status(thm)],[2615,4989,theory(equality)]) ).

cnf(375040,plain,
    ( disjoint(X1,unordered_pair(X2,X2))
    | empty_set = X2
    | powerset(empty_set) != X1 ),
    inference(spm,[status(thm)],[232,374547,theory(equality)]) ).

cnf(375547,plain,
    ( set_difference(X1,unordered_pair(X2,X2)) = X1
    | empty_set = X2
    | powerset(empty_set) != X1 ),
    inference(spm,[status(thm)],[118,375040,theory(equality)]) ).

cnf(375626,plain,
    ( set_difference(powerset(empty_set),unordered_pair(X1,X1)) = powerset(empty_set)
    | empty_set = X1 ),
    inference(er,[status(thm)],[375547,theory(equality)]) ).

cnf(376180,plain,
    ( empty_set = X1
    | ~ in(X1,powerset(empty_set)) ),
    inference(spm,[status(thm)],[4042,375626,theory(equality)]) ).

cnf(377033,negated_conjecture,
    empty_set = esk10_2(empty_set,powerset(empty_set)),
    inference(spm,[status(thm)],[376180,13635,theory(equality)]) ).

cnf(377293,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[377033,13648,theory(equality)]) ).

cnf(377294,negated_conjecture,
    $false,
    377293,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SEU/SEU147+2.p
% --creating new selector for []
% -running prover on /tmp/tmpxVJoJh/sel_SEU147+2.p_1 with time limit 29
% -prover status Theorem
% Problem SEU147+2.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SEU/SEU147+2.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SEU/SEU147+2.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------