TSTP Solution File: SEU146+2 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SEU146+2 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art07.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Thu Dec 30 01:17:54 EST 2010

% Result   : Theorem 1.17s
% Output   : Solution 1.17s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP20752/SEU146+2.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP20752/SEU146+2.tptp
% SZS output start Solution for /tmp/SystemOnTPTP20752/SEU146+2.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 20848
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.02 WC
% # Preprocessing time     : 0.021 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))),file('/tmp/SRASS.s.p', d10_xboole_0)).
% fof(3, axiom,![X1]:![X2]:subset(X1,X1),file('/tmp/SRASS.s.p', reflexivity_r1_tarski)).
% fof(4, axiom,![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3)),file('/tmp/SRASS.s.p', t1_xboole_1)).
% fof(5, axiom,![X1]:subset(empty_set,X1),file('/tmp/SRASS.s.p', t2_xboole_1)).
% fof(6, axiom,![X1]:(subset(X1,empty_set)=>X1=empty_set),file('/tmp/SRASS.s.p', t3_xboole_1)).
% fof(7, axiom,![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)),file('/tmp/SRASS.s.p', l32_xboole_1)).
% fof(9, axiom,![X1]:![X2]:(subset(singleton(X1),X2)<=>in(X1,X2)),file('/tmp/SRASS.s.p', l2_zfmisc_1)).
% fof(16, axiom,![X1]:unordered_pair(X1,X1)=singleton(X1),file('/tmp/SRASS.s.p', t69_enumset1)).
% fof(17, axiom,![X1]:(empty(X1)=>X1=empty_set),file('/tmp/SRASS.s.p', t6_boole)).
% fof(29, axiom,![X1]:![X2]:![X3]:(subset(X1,X2)=>(in(X3,X1)|subset(X1,set_difference(X2,singleton(X3))))),file('/tmp/SRASS.s.p', l3_zfmisc_1)).
% fof(30, axiom,?[X1]:empty(X1),file('/tmp/SRASS.s.p', rc1_xboole_0)).
% fof(34, axiom,![X1]:![X2]:subset(set_difference(X1,X2),X1),file('/tmp/SRASS.s.p', t36_xboole_1)).
% fof(43, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set),file('/tmp/SRASS.s.p', d7_xboole_0)).
% fof(47, axiom,![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1)),file('/tmp/SRASS.s.p', symmetry_r1_xboole_0)).
% fof(54, axiom,![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2),file('/tmp/SRASS.s.p', t48_xboole_1)).
% fof(55, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_difference(X1,X2)=X1),file('/tmp/SRASS.s.p', t83_xboole_1)).
% fof(67, conjecture,![X1]:![X2]:(subset(X1,singleton(X2))<=>(X1=empty_set|X1=singleton(X2))),file('/tmp/SRASS.s.p', l4_zfmisc_1)).
% fof(68, negated_conjecture,~(![X1]:![X2]:(subset(X1,singleton(X2))<=>(X1=empty_set|X1=singleton(X2)))),inference(assume_negation,[status(cth)],[67])).
% fof(79, plain,![X1]:![X2]:((~(X1=X2)|(subset(X1,X2)&subset(X2,X1)))&((~(subset(X1,X2))|~(subset(X2,X1)))|X1=X2)),inference(fof_nnf,[status(thm)],[1])).
% fof(80, plain,![X3]:![X4]:((~(X3=X4)|(subset(X3,X4)&subset(X4,X3)))&((~(subset(X3,X4))|~(subset(X4,X3)))|X3=X4)),inference(variable_rename,[status(thm)],[79])).
% fof(81, plain,![X3]:![X4]:(((subset(X3,X4)|~(X3=X4))&(subset(X4,X3)|~(X3=X4)))&((~(subset(X3,X4))|~(subset(X4,X3)))|X3=X4)),inference(distribute,[status(thm)],[80])).
% cnf(82,plain,(X1=X2|~subset(X2,X1)|~subset(X1,X2)),inference(split_conjunct,[status(thm)],[81])).
% fof(87, plain,![X3]:![X4]:subset(X3,X3),inference(variable_rename,[status(thm)],[3])).
% cnf(88,plain,(subset(X1,X1)),inference(split_conjunct,[status(thm)],[87])).
% fof(89, plain,![X1]:![X2]:![X3]:((~(subset(X1,X2))|~(subset(X2,X3)))|subset(X1,X3)),inference(fof_nnf,[status(thm)],[4])).
% fof(90, plain,![X4]:![X5]:![X6]:((~(subset(X4,X5))|~(subset(X5,X6)))|subset(X4,X6)),inference(variable_rename,[status(thm)],[89])).
% cnf(91,plain,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)),inference(split_conjunct,[status(thm)],[90])).
% fof(92, plain,![X2]:subset(empty_set,X2),inference(variable_rename,[status(thm)],[5])).
% cnf(93,plain,(subset(empty_set,X1)),inference(split_conjunct,[status(thm)],[92])).
% fof(94, plain,![X1]:(~(subset(X1,empty_set))|X1=empty_set),inference(fof_nnf,[status(thm)],[6])).
% fof(95, plain,![X2]:(~(subset(X2,empty_set))|X2=empty_set),inference(variable_rename,[status(thm)],[94])).
% cnf(96,plain,(X1=empty_set|~subset(X1,empty_set)),inference(split_conjunct,[status(thm)],[95])).
% fof(97, plain,![X1]:![X2]:((~(set_difference(X1,X2)=empty_set)|subset(X1,X2))&(~(subset(X1,X2))|set_difference(X1,X2)=empty_set)),inference(fof_nnf,[status(thm)],[7])).
% fof(98, plain,![X3]:![X4]:((~(set_difference(X3,X4)=empty_set)|subset(X3,X4))&(~(subset(X3,X4))|set_difference(X3,X4)=empty_set)),inference(variable_rename,[status(thm)],[97])).
% cnf(99,plain,(set_difference(X1,X2)=empty_set|~subset(X1,X2)),inference(split_conjunct,[status(thm)],[98])).
% cnf(100,plain,(subset(X1,X2)|set_difference(X1,X2)!=empty_set),inference(split_conjunct,[status(thm)],[98])).
% fof(105, plain,![X1]:![X2]:((~(subset(singleton(X1),X2))|in(X1,X2))&(~(in(X1,X2))|subset(singleton(X1),X2))),inference(fof_nnf,[status(thm)],[9])).
% fof(106, plain,![X3]:![X4]:((~(subset(singleton(X3),X4))|in(X3,X4))&(~(in(X3,X4))|subset(singleton(X3),X4))),inference(variable_rename,[status(thm)],[105])).
% cnf(107,plain,(subset(singleton(X1),X2)|~in(X1,X2)),inference(split_conjunct,[status(thm)],[106])).
% fof(132, plain,![X2]:unordered_pair(X2,X2)=singleton(X2),inference(variable_rename,[status(thm)],[16])).
% cnf(133,plain,(unordered_pair(X1,X1)=singleton(X1)),inference(split_conjunct,[status(thm)],[132])).
% fof(134, plain,![X1]:(~(empty(X1))|X1=empty_set),inference(fof_nnf,[status(thm)],[17])).
% fof(135, plain,![X2]:(~(empty(X2))|X2=empty_set),inference(variable_rename,[status(thm)],[134])).
% cnf(136,plain,(X1=empty_set|~empty(X1)),inference(split_conjunct,[status(thm)],[135])).
% fof(167, plain,![X1]:![X2]:![X3]:(~(subset(X1,X2))|(in(X3,X1)|subset(X1,set_difference(X2,singleton(X3))))),inference(fof_nnf,[status(thm)],[29])).
% fof(168, plain,![X4]:![X5]:![X6]:(~(subset(X4,X5))|(in(X6,X4)|subset(X4,set_difference(X5,singleton(X6))))),inference(variable_rename,[status(thm)],[167])).
% cnf(169,plain,(subset(X1,set_difference(X2,singleton(X3)))|in(X3,X1)|~subset(X1,X2)),inference(split_conjunct,[status(thm)],[168])).
% fof(170, plain,?[X2]:empty(X2),inference(variable_rename,[status(thm)],[30])).
% fof(171, plain,empty(esk3_0),inference(skolemize,[status(esa)],[170])).
% cnf(172,plain,(empty(esk3_0)),inference(split_conjunct,[status(thm)],[171])).
% fof(185, plain,![X3]:![X4]:subset(set_difference(X3,X4),X3),inference(variable_rename,[status(thm)],[34])).
% cnf(186,plain,(subset(set_difference(X1,X2),X1)),inference(split_conjunct,[status(thm)],[185])).
% fof(212, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_intersection2(X1,X2)=empty_set)&(~(set_intersection2(X1,X2)=empty_set)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[43])).
% fof(213, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_intersection2(X3,X4)=empty_set)&(~(set_intersection2(X3,X4)=empty_set)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[212])).
% cnf(214,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set),inference(split_conjunct,[status(thm)],[213])).
% fof(225, plain,![X1]:![X2]:(~(disjoint(X1,X2))|disjoint(X2,X1)),inference(fof_nnf,[status(thm)],[47])).
% fof(226, plain,![X3]:![X4]:(~(disjoint(X3,X4))|disjoint(X4,X3)),inference(variable_rename,[status(thm)],[225])).
% cnf(227,plain,(disjoint(X1,X2)|~disjoint(X2,X1)),inference(split_conjunct,[status(thm)],[226])).
% fof(276, plain,![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4),inference(variable_rename,[status(thm)],[54])).
% cnf(277,plain,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)),inference(split_conjunct,[status(thm)],[276])).
% fof(278, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_difference(X1,X2)=X1)&(~(set_difference(X1,X2)=X1)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[55])).
% fof(279, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_difference(X3,X4)=X3)&(~(set_difference(X3,X4)=X3)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[278])).
% cnf(281,plain,(set_difference(X1,X2)=X1|~disjoint(X1,X2)),inference(split_conjunct,[status(thm)],[279])).
% fof(311, negated_conjecture,?[X1]:?[X2]:((~(subset(X1,singleton(X2)))|(~(X1=empty_set)&~(X1=singleton(X2))))&(subset(X1,singleton(X2))|(X1=empty_set|X1=singleton(X2)))),inference(fof_nnf,[status(thm)],[68])).
% fof(312, negated_conjecture,?[X3]:?[X4]:((~(subset(X3,singleton(X4)))|(~(X3=empty_set)&~(X3=singleton(X4))))&(subset(X3,singleton(X4))|(X3=empty_set|X3=singleton(X4)))),inference(variable_rename,[status(thm)],[311])).
% fof(313, negated_conjecture,((~(subset(esk13_0,singleton(esk14_0)))|(~(esk13_0=empty_set)&~(esk13_0=singleton(esk14_0))))&(subset(esk13_0,singleton(esk14_0))|(esk13_0=empty_set|esk13_0=singleton(esk14_0)))),inference(skolemize,[status(esa)],[312])).
% fof(314, negated_conjecture,(((~(esk13_0=empty_set)|~(subset(esk13_0,singleton(esk14_0))))&(~(esk13_0=singleton(esk14_0))|~(subset(esk13_0,singleton(esk14_0)))))&(subset(esk13_0,singleton(esk14_0))|(esk13_0=empty_set|esk13_0=singleton(esk14_0)))),inference(distribute,[status(thm)],[313])).
% cnf(315,negated_conjecture,(esk13_0=singleton(esk14_0)|esk13_0=empty_set|subset(esk13_0,singleton(esk14_0))),inference(split_conjunct,[status(thm)],[314])).
% cnf(316,negated_conjecture,(~subset(esk13_0,singleton(esk14_0))|esk13_0!=singleton(esk14_0)),inference(split_conjunct,[status(thm)],[314])).
% cnf(317,negated_conjecture,(~subset(esk13_0,singleton(esk14_0))|esk13_0!=empty_set),inference(split_conjunct,[status(thm)],[314])).
% cnf(319,negated_conjecture,(esk13_0=empty_set|unordered_pair(esk14_0,esk14_0)=esk13_0|subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(rw,[status(thm)],[inference(rw,[status(thm)],[315,133,theory(equality)]),133,theory(equality)]),['unfolding']).
% cnf(321,plain,(subset(unordered_pair(X1,X1),X2)|~in(X1,X2)),inference(rw,[status(thm)],[107,133,theory(equality)]),['unfolding']).
% cnf(322,plain,(in(X3,X1)|subset(X1,set_difference(X2,unordered_pair(X3,X3)))|~subset(X1,X2)),inference(rw,[status(thm)],[169,133,theory(equality)]),['unfolding']).
% cnf(327,negated_conjecture,(esk13_0!=empty_set|~subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(rw,[status(thm)],[317,133,theory(equality)]),['unfolding']).
% cnf(328,negated_conjecture,(unordered_pair(esk14_0,esk14_0)!=esk13_0|~subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(rw,[status(thm)],[inference(rw,[status(thm)],[316,133,theory(equality)]),133,theory(equality)]),['unfolding']).
% cnf(338,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set),inference(rw,[status(thm)],[214,277,theory(equality)]),['unfolding']).
% cnf(365,plain,(empty_set=esk3_0),inference(spm,[status(thm)],[136,172,theory(equality)])).
% cnf(412,plain,(X1=set_difference(X1,X2)|~subset(X1,set_difference(X1,X2))),inference(spm,[status(thm)],[82,186,theory(equality)])).
% cnf(1309,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=esk3_0),inference(rw,[status(thm)],[338,365,theory(equality)])).
% cnf(1311,negated_conjecture,(esk13_0!=esk3_0|~subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(rw,[status(thm)],[327,365,theory(equality)])).
% cnf(1312,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)|esk13_0=esk3_0|subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(rw,[status(thm)],[319,365,theory(equality)])).
% cnf(1314,plain,(subset(X1,X2)|set_difference(X1,X2)!=esk3_0),inference(rw,[status(thm)],[100,365,theory(equality)])).
% cnf(1315,plain,(set_difference(X1,X2)=esk3_0|~subset(X1,X2)),inference(rw,[status(thm)],[99,365,theory(equality)])).
% cnf(1319,plain,(esk3_0=X1|~subset(X1,empty_set)),inference(rw,[status(thm)],[96,365,theory(equality)])).
% cnf(1320,plain,(esk3_0=X1|~subset(X1,esk3_0)),inference(rw,[status(thm)],[1319,365,theory(equality)])).
% cnf(1324,plain,(subset(esk3_0,X1)),inference(rw,[status(thm)],[93,365,theory(equality)])).
% cnf(1333,plain,(subset(X1,X2)|~subset(X1,esk3_0)),inference(spm,[status(thm)],[91,1324,theory(equality)])).
% cnf(1374,plain,(esk3_0=set_difference(esk3_0,X1)),inference(spm,[status(thm)],[1320,186,theory(equality)])).
% cnf(1380,plain,(disjoint(esk3_0,X1)),inference(spm,[status(thm)],[1309,1374,theory(equality)])).
% cnf(1478,plain,(disjoint(X1,esk3_0)),inference(spm,[status(thm)],[227,1380,theory(equality)])).
% cnf(1483,plain,(set_difference(X1,esk3_0)=X1),inference(spm,[status(thm)],[281,1478,theory(equality)])).
% cnf(1723,plain,(subset(X1,X2)|set_difference(X1,esk3_0)!=esk3_0),inference(spm,[status(thm)],[1333,1314,theory(equality)])).
% cnf(1730,plain,(subset(X1,X2)|X1!=esk3_0),inference(rw,[status(thm)],[1723,1483,theory(equality)])).
% cnf(1731,negated_conjecture,(esk13_0!=esk3_0),inference(spm,[status(thm)],[1311,1730,theory(equality)])).
% cnf(1757,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)|subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(sr,[status(thm)],[1312,1731,theory(equality)])).
% cnf(1759,negated_conjecture,(unordered_pair(esk14_0,esk14_0)=esk13_0|~subset(unordered_pair(esk14_0,esk14_0),esk13_0)),inference(spm,[status(thm)],[82,1757,theory(equality)])).
% cnf(1760,negated_conjecture,(set_difference(esk13_0,unordered_pair(esk14_0,esk14_0))=esk3_0|esk13_0=unordered_pair(esk14_0,esk14_0)),inference(spm,[status(thm)],[1315,1757,theory(equality)])).
% cnf(1798,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)|~in(esk14_0,esk13_0)),inference(spm,[status(thm)],[1759,321,theory(equality)])).
% cnf(1921,negated_conjecture,(in(esk14_0,X1)|subset(X1,esk3_0)|esk13_0=unordered_pair(esk14_0,esk14_0)|~subset(X1,esk13_0)),inference(spm,[status(thm)],[322,1760,theory(equality)])).
% cnf(2101,negated_conjecture,(esk3_0=esk13_0|esk13_0=unordered_pair(esk14_0,esk14_0)|~subset(esk13_0,esk3_0)),inference(spm,[status(thm)],[412,1760,theory(equality)])).
% cnf(2119,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)|~subset(esk13_0,esk3_0)),inference(sr,[status(thm)],[2101,1731,theory(equality)])).
% cnf(4670,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)|in(esk14_0,esk13_0)|subset(esk13_0,esk3_0)),inference(spm,[status(thm)],[1921,88,theory(equality)])).
% cnf(4679,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)|in(esk14_0,esk13_0)),inference(csr,[status(thm)],[4670,2119])).
% cnf(4680,negated_conjecture,(esk13_0=unordered_pair(esk14_0,esk14_0)),inference(csr,[status(thm)],[4679,1798])).
% cnf(4744,negated_conjecture,($false|~subset(esk13_0,unordered_pair(esk14_0,esk14_0))),inference(rw,[status(thm)],[328,4680,theory(equality)])).
% cnf(4745,negated_conjecture,($false|$false),inference(rw,[status(thm)],[inference(rw,[status(thm)],[4744,4680,theory(equality)]),88,theory(equality)])).
% cnf(4746,negated_conjecture,($false),inference(cn,[status(thm)],[4745,theory(equality)])).
% cnf(4747,negated_conjecture,($false),4746,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 721
% # ...of these trivial                : 23
% # ...subsumed                        : 364
% # ...remaining for further processing: 334
% # Other redundant clauses eliminated : 71
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 1
% # Backward-rewritten                 : 49
% # Generated clauses                  : 3388
% # ...of the previous two non-trivial : 2713
% # Contextual simplify-reflections    : 12
% # Paramodulations                    : 3288
% # Factorizations                     : 14
% # Equation resolutions               : 85
% # Current number of processed clauses: 186
% #    Positive orientable unit clauses: 40
% #    Positive unorientable unit clauses: 8
% #    Negative unit clauses           : 20
% #    Non-unit-clauses                : 118
% # Current number of unprocessed clauses: 1447
% # ...number of literals in the above : 4091
% # Clause-clause subsumption calls (NU) : 941
% # Rec. Clause-clause subsumption calls : 891
% # Unit Clause-clause subsumption calls : 138
% # Rewrite failures with RHS unbound  : 22
% # Indexed BW rewrite attempts        : 137
% # Indexed BW rewrite successes       : 45
% # Backwards rewriting index:   101 leaves,   1.81+/-1.663 terms/leaf
% # Paramod-from index:           64 leaves,   1.42+/-0.680 terms/leaf
% # Paramod-into index:           98 leaves,   1.71+/-1.363 terms/leaf
% # -------------------------------------------------
% # User time              : 0.118 s
% # System time            : 0.008 s
% # Total time             : 0.126 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.26 CPU 0.35 WC
% FINAL PrfWatch: 0.26 CPU 0.35 WC
% SZS output end Solution for /tmp/SystemOnTPTP20752/SEU146+2.tptp
% 
%------------------------------------------------------------------------------