TSTP Solution File: SEU146+2 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SEU146+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:22:45 EDT 2023

% Result   : Theorem 0.19s 0.59s
% Output   : CNFRefutation 0.19s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :   39
% Syntax   : Number of formulae    :   93 (  22 unt;  25 typ;   0 def)
%            Number of atoms       :  178 (  69 equ)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives :  182 (  72   ~;  69   |;  31   &)
%                                         (   9 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   41 (  20   >;  21   *;   0   +;   0  <<)
%            Number of predicates  :    7 (   5 usr;   1 prp; 0-2 aty)
%            Number of functors    :   20 (  20 usr;   5 con; 0-3 aty)
%            Number of variables   :  120 (   7 sgn;  73   !;   4   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    in: ( $i * $i ) > $o ).

tff(decl_23,type,
    proper_subset: ( $i * $i ) > $o ).

tff(decl_24,type,
    unordered_pair: ( $i * $i ) > $i ).

tff(decl_25,type,
    set_union2: ( $i * $i ) > $i ).

tff(decl_26,type,
    set_intersection2: ( $i * $i ) > $i ).

tff(decl_27,type,
    subset: ( $i * $i ) > $o ).

tff(decl_28,type,
    singleton: $i > $i ).

tff(decl_29,type,
    empty_set: $i ).

tff(decl_30,type,
    set_difference: ( $i * $i ) > $i ).

tff(decl_31,type,
    disjoint: ( $i * $i ) > $o ).

tff(decl_32,type,
    empty: $i > $o ).

tff(decl_33,type,
    esk1_2: ( $i * $i ) > $i ).

tff(decl_34,type,
    esk2_1: $i > $i ).

tff(decl_35,type,
    esk3_3: ( $i * $i * $i ) > $i ).

tff(decl_36,type,
    esk4_3: ( $i * $i * $i ) > $i ).

tff(decl_37,type,
    esk5_2: ( $i * $i ) > $i ).

tff(decl_38,type,
    esk6_3: ( $i * $i * $i ) > $i ).

tff(decl_39,type,
    esk7_3: ( $i * $i * $i ) > $i ).

tff(decl_40,type,
    esk8_0: $i ).

tff(decl_41,type,
    esk9_0: $i ).

tff(decl_42,type,
    esk10_0: $i ).

tff(decl_43,type,
    esk11_0: $i ).

tff(decl_44,type,
    esk12_2: ( $i * $i ) > $i ).

tff(decl_45,type,
    esk13_2: ( $i * $i ) > $i ).

tff(decl_46,type,
    esk14_2: ( $i * $i ) > $i ).

fof(t4_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t4_xboole_0) ).

fof(t48_xboole_1,lemma,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t48_xboole_1) ).

fof(t3_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t3_xboole_0) ).

fof(t2_boole,axiom,
    ! [X1] : set_intersection2(X1,empty_set) = empty_set,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t2_boole) ).

fof(t3_boole,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t3_boole) ).

fof(d1_xboole_0,axiom,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d1_xboole_0) ).

fof(l4_zfmisc_1,conjecture,
    ! [X1,X2] :
      ( subset(X1,singleton(X2))
    <=> ( X1 = empty_set
        | X1 = singleton(X2) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',l4_zfmisc_1) ).

fof(d1_tarski,axiom,
    ! [X1,X2] :
      ( X2 = singleton(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> X3 = X1 ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d1_tarski) ).

fof(t69_enumset1,lemma,
    ! [X1] : unordered_pair(X1,X1) = singleton(X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t69_enumset1) ).

fof(d3_tarski,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d3_tarski) ).

fof(l2_zfmisc_1,lemma,
    ! [X1,X2] :
      ( subset(singleton(X1),X2)
    <=> in(X1,X2) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',l2_zfmisc_1) ).

fof(d10_xboole_0,axiom,
    ! [X1,X2] :
      ( X1 = X2
    <=> ( subset(X1,X2)
        & subset(X2,X1) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d10_xboole_0) ).

fof(reflexivity_r1_tarski,axiom,
    ! [X1,X2] : subset(X1,X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',reflexivity_r1_tarski) ).

fof(t2_xboole_1,lemma,
    ! [X1] : subset(empty_set,X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t2_xboole_1) ).

fof(c_0_14,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    inference(fof_simplification,[status(thm)],[t4_xboole_0]) ).

fof(c_0_15,lemma,
    ! [X141,X142,X144,X145,X146] :
      ( ( disjoint(X141,X142)
        | in(esk14_2(X141,X142),set_intersection2(X141,X142)) )
      & ( ~ in(X146,set_intersection2(X144,X145))
        | ~ disjoint(X144,X145) ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])])])]) ).

fof(c_0_16,lemma,
    ! [X138,X139] : set_difference(X138,set_difference(X138,X139)) = set_intersection2(X138,X139),
    inference(variable_rename,[status(thm)],[t48_xboole_1]) ).

fof(c_0_17,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    inference(fof_simplification,[status(thm)],[t3_xboole_0]) ).

fof(c_0_18,plain,
    ! [X112] : set_intersection2(X112,empty_set) = empty_set,
    inference(variable_rename,[status(thm)],[t2_boole]) ).

cnf(c_0_19,lemma,
    ( ~ in(X1,set_intersection2(X2,X3))
    | ~ disjoint(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_20,lemma,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

fof(c_0_21,lemma,
    ! [X127,X128,X130,X131,X132] :
      ( ( in(esk13_2(X127,X128),X127)
        | disjoint(X127,X128) )
      & ( in(esk13_2(X127,X128),X128)
        | disjoint(X127,X128) )
      & ( ~ in(X132,X130)
        | ~ in(X132,X131)
        | ~ disjoint(X130,X131) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])])])]) ).

cnf(c_0_22,plain,
    set_intersection2(X1,empty_set) = empty_set,
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

fof(c_0_23,plain,
    ! [X126] : set_difference(X126,empty_set) = X126,
    inference(variable_rename,[status(thm)],[t3_boole]) ).

cnf(c_0_24,lemma,
    ( ~ disjoint(X2,X3)
    | ~ in(X1,set_difference(X2,set_difference(X2,X3))) ),
    inference(rw,[status(thm)],[c_0_19,c_0_20]) ).

cnf(c_0_25,lemma,
    ( in(esk13_2(X1,X2),X2)
    | disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_21]) ).

cnf(c_0_26,plain,
    set_difference(X1,set_difference(X1,empty_set)) = empty_set,
    inference(rw,[status(thm)],[c_0_22,c_0_20]) ).

cnf(c_0_27,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

fof(c_0_28,plain,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[d1_xboole_0]) ).

cnf(c_0_29,lemma,
    ( in(esk13_2(X1,X2),X2)
    | ~ in(X3,set_difference(X1,set_difference(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_24,c_0_25]) ).

cnf(c_0_30,plain,
    set_difference(X1,X1) = empty_set,
    inference(rw,[status(thm)],[c_0_26,c_0_27]) ).

fof(c_0_31,plain,
    ! [X24,X25,X26] :
      ( ( X24 != empty_set
        | ~ in(X25,X24) )
      & ( in(esk2_1(X26),X26)
        | X26 = empty_set ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_28])])])])]) ).

fof(c_0_32,negated_conjecture,
    ~ ! [X1,X2] :
        ( subset(X1,singleton(X2))
      <=> ( X1 = empty_set
          | X1 = singleton(X2) ) ),
    inference(assume_negation,[status(cth)],[l4_zfmisc_1]) ).

fof(c_0_33,plain,
    ! [X17,X18,X19,X20,X21,X22] :
      ( ( ~ in(X19,X18)
        | X19 = X17
        | X18 != singleton(X17) )
      & ( X20 != X17
        | in(X20,X18)
        | X18 != singleton(X17) )
      & ( ~ in(esk1_2(X21,X22),X22)
        | esk1_2(X21,X22) != X21
        | X22 = singleton(X21) )
      & ( in(esk1_2(X21,X22),X22)
        | esk1_2(X21,X22) = X21
        | X22 = singleton(X21) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_tarski])])])])])]) ).

fof(c_0_34,lemma,
    ! [X152] : unordered_pair(X152,X152) = singleton(X152),
    inference(variable_rename,[status(thm)],[t69_enumset1]) ).

fof(c_0_35,plain,
    ! [X46,X47,X48,X49,X50] :
      ( ( ~ subset(X46,X47)
        | ~ in(X48,X46)
        | in(X48,X47) )
      & ( in(esk5_2(X49,X50),X49)
        | subset(X49,X50) )
      & ( ~ in(esk5_2(X49,X50),X50)
        | subset(X49,X50) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_tarski])])])])])]) ).

cnf(c_0_36,lemma,
    ( in(esk13_2(X1,X1),X1)
    | ~ in(X2,X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_30]),c_0_27]) ).

cnf(c_0_37,plain,
    ( in(esk2_1(X1),X1)
    | X1 = empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

fof(c_0_38,negated_conjecture,
    ( ( esk8_0 != empty_set
      | ~ subset(esk8_0,singleton(esk9_0)) )
    & ( esk8_0 != singleton(esk9_0)
      | ~ subset(esk8_0,singleton(esk9_0)) )
    & ( subset(esk8_0,singleton(esk9_0))
      | esk8_0 = empty_set
      | esk8_0 = singleton(esk9_0) ) ),
    inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_32])])])]) ).

cnf(c_0_39,plain,
    ( X1 = X3
    | ~ in(X1,X2)
    | X2 != singleton(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_33]) ).

cnf(c_0_40,lemma,
    unordered_pair(X1,X1) = singleton(X1),
    inference(split_conjunct,[status(thm)],[c_0_34]) ).

cnf(c_0_41,plain,
    ( in(X3,X2)
    | ~ subset(X1,X2)
    | ~ in(X3,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_42,lemma,
    ( X1 = empty_set
    | in(esk13_2(X1,X1),X1) ),
    inference(spm,[status(thm)],[c_0_36,c_0_37]) ).

cnf(c_0_43,negated_conjecture,
    ( subset(esk8_0,singleton(esk9_0))
    | esk8_0 = empty_set
    | esk8_0 = singleton(esk9_0) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_44,plain,
    ( X1 = X3
    | X2 != unordered_pair(X3,X3)
    | ~ in(X1,X2) ),
    inference(rw,[status(thm)],[c_0_39,c_0_40]) ).

cnf(c_0_45,lemma,
    ( X1 = empty_set
    | in(esk13_2(X1,X1),X2)
    | ~ subset(X1,X2) ),
    inference(spm,[status(thm)],[c_0_41,c_0_42]) ).

cnf(c_0_46,negated_conjecture,
    ( esk8_0 = empty_set
    | esk8_0 = unordered_pair(esk9_0,esk9_0)
    | subset(esk8_0,unordered_pair(esk9_0,esk9_0)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_43,c_0_40]),c_0_40]) ).

fof(c_0_47,lemma,
    ! [X82,X83] :
      ( ( ~ subset(singleton(X82),X83)
        | in(X82,X83) )
      & ( ~ in(X82,X83)
        | subset(singleton(X82),X83) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l2_zfmisc_1])]) ).

cnf(c_0_48,plain,
    ( X1 = X2
    | ~ in(X1,unordered_pair(X2,X2)) ),
    inference(er,[status(thm)],[c_0_44]) ).

cnf(c_0_49,negated_conjecture,
    ( unordered_pair(esk9_0,esk9_0) = esk8_0
    | esk8_0 = empty_set
    | in(esk13_2(esk8_0,esk8_0),unordered_pair(esk9_0,esk9_0)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_46]) ).

fof(c_0_50,plain,
    ! [X15,X16] :
      ( ( subset(X15,X16)
        | X15 != X16 )
      & ( subset(X16,X15)
        | X15 != X16 )
      & ( ~ subset(X15,X16)
        | ~ subset(X16,X15)
        | X15 = X16 ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])]) ).

cnf(c_0_51,lemma,
    ( subset(singleton(X1),X2)
    | ~ in(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

cnf(c_0_52,negated_conjecture,
    ( unordered_pair(esk9_0,esk9_0) = esk8_0
    | esk13_2(esk8_0,esk8_0) = esk9_0
    | esk8_0 = empty_set ),
    inference(spm,[status(thm)],[c_0_48,c_0_49]) ).

cnf(c_0_53,plain,
    ( X1 = X2
    | ~ subset(X1,X2)
    | ~ subset(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_54,negated_conjecture,
    ( esk8_0 != singleton(esk9_0)
    | ~ subset(esk8_0,singleton(esk9_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_55,lemma,
    ( subset(unordered_pair(X1,X1),X2)
    | ~ in(X1,X2) ),
    inference(rw,[status(thm)],[c_0_51,c_0_40]) ).

cnf(c_0_56,lemma,
    ( unordered_pair(esk9_0,esk9_0) = esk8_0
    | esk8_0 = empty_set
    | in(esk9_0,esk8_0) ),
    inference(spm,[status(thm)],[c_0_42,c_0_52]) ).

cnf(c_0_57,negated_conjecture,
    ( unordered_pair(esk9_0,esk9_0) = esk8_0
    | esk8_0 = empty_set
    | ~ subset(unordered_pair(esk9_0,esk9_0),esk8_0) ),
    inference(spm,[status(thm)],[c_0_53,c_0_46]) ).

fof(c_0_58,plain,
    ! [X93] : subset(X93,X93),
    inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[reflexivity_r1_tarski])]) ).

cnf(c_0_59,negated_conjecture,
    ( esk8_0 != empty_set
    | ~ subset(esk8_0,singleton(esk9_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_60,negated_conjecture,
    ( esk8_0 != unordered_pair(esk9_0,esk9_0)
    | ~ subset(esk8_0,unordered_pair(esk9_0,esk9_0)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_54,c_0_40]),c_0_40]) ).

cnf(c_0_61,lemma,
    ( unordered_pair(esk9_0,esk9_0) = esk8_0
    | esk8_0 = empty_set ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_55,c_0_56]),c_0_57]) ).

cnf(c_0_62,plain,
    subset(X1,X1),
    inference(split_conjunct,[status(thm)],[c_0_58]) ).

fof(c_0_63,lemma,
    ! [X116] : subset(empty_set,X116),
    inference(variable_rename,[status(thm)],[t2_xboole_1]) ).

cnf(c_0_64,negated_conjecture,
    ( esk8_0 != empty_set
    | ~ subset(esk8_0,unordered_pair(esk9_0,esk9_0)) ),
    inference(rw,[status(thm)],[c_0_59,c_0_40]) ).

cnf(c_0_65,negated_conjecture,
    esk8_0 = empty_set,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_61]),c_0_62])]) ).

cnf(c_0_66,lemma,
    subset(empty_set,X1),
    inference(split_conjunct,[status(thm)],[c_0_63]) ).

cnf(c_0_67,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_64,c_0_65]),c_0_65]),c_0_66])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SEU146+2 : TPTP v8.1.2. Released v3.3.0.
% 0.13/0.13  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.33  % Computer : n009.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit   : 300
% 0.13/0.33  % WCLimit    : 300
% 0.13/0.33  % DateTime   : Wed Aug 23 13:33:06 EDT 2023
% 0.13/0.33  % CPUTime  : 
% 0.19/0.55  start to proof: theBenchmark
% 0.19/0.59  % Version  : CSE_E---1.5
% 0.19/0.59  % Problem  : theBenchmark.p
% 0.19/0.59  % Proof found
% 0.19/0.59  % SZS status Theorem for theBenchmark.p
% 0.19/0.59  % SZS output start Proof
% See solution above
% 0.19/0.59  % Total time : 0.027000 s
% 0.19/0.59  % SZS output end Proof
% 0.19/0.59  % Total time : 0.030000 s
%------------------------------------------------------------------------------