TSTP Solution File: SEU142+2 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SEU142+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:22:43 EDT 2023

% Result   : Theorem 47.62s 47.72s
% Output   : CNFRefutation 47.62s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   28
%            Number of leaves      :   51
% Syntax   : Number of formulae    :  196 (  72 unt;  24 typ;   0 def)
%            Number of atoms       :  404 ( 163 equ)
%            Maximal formula atoms :   20 (   2 avg)
%            Number of connectives :  381 ( 149   ~; 158   |;  49   &)
%                                         (  18 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   3 avg)
%            Maximal term depth    :    5 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   41 (  20   >;  21   *;   0   +;   0  <<)
%            Number of predicates  :    7 (   5 usr;   1 prp; 0-2 aty)
%            Number of functors    :   19 (  19 usr;   4 con; 0-3 aty)
%            Number of variables   :  380 (  40 sgn; 159   !;   4   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    in: ( $i * $i ) > $o ).

tff(decl_23,type,
    proper_subset: ( $i * $i ) > $o ).

tff(decl_24,type,
    unordered_pair: ( $i * $i ) > $i ).

tff(decl_25,type,
    set_union2: ( $i * $i ) > $i ).

tff(decl_26,type,
    set_intersection2: ( $i * $i ) > $i ).

tff(decl_27,type,
    subset: ( $i * $i ) > $o ).

tff(decl_28,type,
    singleton: $i > $i ).

tff(decl_29,type,
    empty_set: $i ).

tff(decl_30,type,
    set_difference: ( $i * $i ) > $i ).

tff(decl_31,type,
    disjoint: ( $i * $i ) > $o ).

tff(decl_32,type,
    empty: $i > $o ).

tff(decl_33,type,
    esk1_2: ( $i * $i ) > $i ).

tff(decl_34,type,
    esk2_1: $i > $i ).

tff(decl_35,type,
    esk3_3: ( $i * $i * $i ) > $i ).

tff(decl_36,type,
    esk4_3: ( $i * $i * $i ) > $i ).

tff(decl_37,type,
    esk5_2: ( $i * $i ) > $i ).

tff(decl_38,type,
    esk6_3: ( $i * $i * $i ) > $i ).

tff(decl_39,type,
    esk7_3: ( $i * $i * $i ) > $i ).

tff(decl_40,type,
    esk8_0: $i ).

tff(decl_41,type,
    esk9_0: $i ).

tff(decl_42,type,
    esk10_2: ( $i * $i ) > $i ).

tff(decl_43,type,
    esk11_2: ( $i * $i ) > $i ).

tff(decl_44,type,
    esk12_2: ( $i * $i ) > $i ).

tff(decl_45,type,
    esk13_0: $i ).

fof(t4_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t4_xboole_0) ).

fof(d1_xboole_0,axiom,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d1_xboole_0) ).

fof(t2_boole,axiom,
    ! [X1] : set_intersection2(X1,empty_set) = empty_set,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t2_boole) ).

fof(t48_xboole_1,lemma,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t48_xboole_1) ).

fof(t28_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_intersection2(X1,X2) = X1 ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t28_xboole_1) ).

fof(t3_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t3_xboole_0) ).

fof(t12_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_union2(X1,X2) = X2 ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t12_xboole_1) ).

fof(t7_xboole_1,lemma,
    ! [X1,X2] : subset(X1,set_union2(X1,X2)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t7_xboole_1) ).

fof(t3_boole,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t3_boole) ).

fof(d4_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d4_xboole_0) ).

fof(t40_xboole_1,lemma,
    ! [X1,X2] : set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t40_xboole_1) ).

fof(d1_tarski,axiom,
    ! [X1,X2] :
      ( X2 = singleton(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> X3 = X1 ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d1_tarski) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',commutativity_k3_xboole_0) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [X1,X2] : set_union2(X1,X2) = set_union2(X2,X1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',commutativity_k2_xboole_0) ).

fof(l32_xboole_1,lemma,
    ! [X1,X2] :
      ( set_difference(X1,X2) = empty_set
    <=> subset(X1,X2) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',l32_xboole_1) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [X1,X2] :
      ( in(X1,X2)
     => ~ in(X2,X1) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',antisymmetry_r2_hidden) ).

fof(t83_xboole_1,lemma,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_difference(X1,X2) = X1 ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t83_xboole_1) ).

fof(d3_tarski,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d3_tarski) ).

fof(d7_xboole_0,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_intersection2(X1,X2) = empty_set ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d7_xboole_0) ).

fof(symmetry_r1_xboole_0,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
     => disjoint(X2,X1) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',symmetry_r1_xboole_0) ).

fof(t2_tarski,axiom,
    ! [X1,X2] :
      ( ! [X3] :
          ( in(X3,X1)
        <=> in(X3,X2) )
     => X1 = X2 ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t2_tarski) ).

fof(t39_xboole_1,lemma,
    ! [X1,X2] : set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t39_xboole_1) ).

fof(t36_xboole_1,lemma,
    ! [X1,X2] : subset(set_difference(X1,X2),X1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t36_xboole_1) ).

fof(d2_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_union2(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            | in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d2_xboole_0) ).

fof(d2_tarski,axiom,
    ! [X1,X2,X3] :
      ( X3 = unordered_pair(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( X4 = X1
            | X4 = X2 ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d2_tarski) ).

fof(d10_xboole_0,axiom,
    ! [X1,X2] :
      ( X1 = X2
    <=> ( subset(X1,X2)
        & subset(X2,X1) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d10_xboole_0) ).

fof(t69_enumset1,conjecture,
    ! [X1] : unordered_pair(X1,X1) = singleton(X1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t69_enumset1) ).

fof(c_0_27,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    inference(fof_simplification,[status(thm)],[t4_xboole_0]) ).

fof(c_0_28,plain,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[d1_xboole_0]) ).

fof(c_0_29,plain,
    ! [X104] : set_intersection2(X104,empty_set) = empty_set,
    inference(variable_rename,[status(thm)],[t2_boole]) ).

fof(c_0_30,lemma,
    ! [X130,X131] : set_difference(X130,set_difference(X130,X131)) = set_intersection2(X130,X131),
    inference(variable_rename,[status(thm)],[t48_xboole_1]) ).

fof(c_0_31,lemma,
    ! [X133,X134,X136,X137,X138] :
      ( ( disjoint(X133,X134)
        | in(esk12_2(X133,X134),set_intersection2(X133,X134)) )
      & ( ~ in(X138,set_intersection2(X136,X137))
        | ~ disjoint(X136,X137) ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_27])])])])]) ).

fof(c_0_32,lemma,
    ! [X102,X103] :
      ( ~ subset(X102,X103)
      | set_intersection2(X102,X103) = X102 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t28_xboole_1])]) ).

fof(c_0_33,plain,
    ! [X24,X25,X26] :
      ( ( X24 != empty_set
        | ~ in(X25,X24) )
      & ( in(esk2_1(X26),X26)
        | X26 = empty_set ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_28])])])])]) ).

fof(c_0_34,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    inference(fof_simplification,[status(thm)],[t3_xboole_0]) ).

fof(c_0_35,lemma,
    ! [X88,X89] :
      ( ~ subset(X88,X89)
      | set_union2(X88,X89) = X89 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])]) ).

fof(c_0_36,lemma,
    ! [X148,X149] : subset(X148,set_union2(X148,X149)),
    inference(variable_rename,[status(thm)],[t7_xboole_1]) ).

cnf(c_0_37,plain,
    set_intersection2(X1,empty_set) = empty_set,
    inference(split_conjunct,[status(thm)],[c_0_29]) ).

cnf(c_0_38,lemma,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

fof(c_0_39,plain,
    ! [X118] : set_difference(X118,empty_set) = X118,
    inference(variable_rename,[status(thm)],[t3_boole]) ).

cnf(c_0_40,lemma,
    ( ~ in(X1,set_intersection2(X2,X3))
    | ~ disjoint(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_41,lemma,
    ( set_intersection2(X1,X2) = X1
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_42,plain,
    ( X1 != empty_set
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_33]) ).

fof(c_0_43,lemma,
    ! [X119,X120,X122,X123,X124] :
      ( ( in(esk11_2(X119,X120),X119)
        | disjoint(X119,X120) )
      & ( in(esk11_2(X119,X120),X120)
        | disjoint(X119,X120) )
      & ( ~ in(X124,X122)
        | ~ in(X124,X123)
        | ~ disjoint(X122,X123) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_34])])])])])]) ).

fof(c_0_44,plain,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    inference(fof_simplification,[status(thm)],[d4_xboole_0]) ).

fof(c_0_45,lemma,
    ! [X126,X127] : set_difference(set_union2(X126,X127),X127) = set_difference(X126,X127),
    inference(variable_rename,[status(thm)],[t40_xboole_1]) ).

cnf(c_0_46,lemma,
    ( set_union2(X1,X2) = X2
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_47,lemma,
    subset(X1,set_union2(X1,X2)),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_48,plain,
    set_difference(X1,set_difference(X1,empty_set)) = empty_set,
    inference(rw,[status(thm)],[c_0_37,c_0_38]) ).

cnf(c_0_49,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_50,lemma,
    ( ~ disjoint(X2,X3)
    | ~ in(X1,set_difference(X2,set_difference(X2,X3))) ),
    inference(rw,[status(thm)],[c_0_40,c_0_38]) ).

cnf(c_0_51,lemma,
    ( set_difference(X1,set_difference(X1,X2)) = X1
    | ~ subset(X1,X2) ),
    inference(rw,[status(thm)],[c_0_41,c_0_38]) ).

cnf(c_0_52,plain,
    ~ in(X1,empty_set),
    inference(er,[status(thm)],[c_0_42]) ).

cnf(c_0_53,lemma,
    ( in(esk11_2(X1,X2),X2)
    | disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

fof(c_0_54,plain,
    ! [X17,X18,X19,X20,X21,X22] :
      ( ( ~ in(X19,X18)
        | X19 = X17
        | X18 != singleton(X17) )
      & ( X20 != X17
        | in(X20,X18)
        | X18 != singleton(X17) )
      & ( ~ in(esk1_2(X21,X22),X22)
        | esk1_2(X21,X22) != X21
        | X22 = singleton(X21) )
      & ( in(esk1_2(X21,X22),X22)
        | esk1_2(X21,X22) = X21
        | X22 = singleton(X21) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_tarski])])])])])]) ).

fof(c_0_55,plain,
    ! [X61,X62,X63,X64,X65,X66,X67,X68] :
      ( ( in(X64,X61)
        | ~ in(X64,X63)
        | X63 != set_difference(X61,X62) )
      & ( ~ in(X64,X62)
        | ~ in(X64,X63)
        | X63 != set_difference(X61,X62) )
      & ( ~ in(X65,X61)
        | in(X65,X62)
        | in(X65,X63)
        | X63 != set_difference(X61,X62) )
      & ( ~ in(esk7_3(X66,X67,X68),X68)
        | ~ in(esk7_3(X66,X67,X68),X66)
        | in(esk7_3(X66,X67,X68),X67)
        | X68 = set_difference(X66,X67) )
      & ( in(esk7_3(X66,X67,X68),X66)
        | in(esk7_3(X66,X67,X68),X68)
        | X68 = set_difference(X66,X67) )
      & ( ~ in(esk7_3(X66,X67,X68),X67)
        | in(esk7_3(X66,X67,X68),X68)
        | X68 = set_difference(X66,X67) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_44])])])])])]) ).

fof(c_0_56,plain,
    ! [X13,X14] : set_intersection2(X13,X14) = set_intersection2(X14,X13),
    inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0]) ).

cnf(c_0_57,lemma,
    set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_58,lemma,
    set_union2(X1,set_union2(X1,X2)) = set_union2(X1,X2),
    inference(spm,[status(thm)],[c_0_46,c_0_47]) ).

cnf(c_0_59,plain,
    set_difference(X1,X1) = empty_set,
    inference(rw,[status(thm)],[c_0_48,c_0_49]) ).

fof(c_0_60,plain,
    ! [X11,X12] : set_union2(X11,X12) = set_union2(X12,X11),
    inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0]) ).

cnf(c_0_61,lemma,
    ( ~ disjoint(X1,X2)
    | ~ subset(X1,X2)
    | ~ in(X3,X1) ),
    inference(spm,[status(thm)],[c_0_50,c_0_51]) ).

cnf(c_0_62,lemma,
    disjoint(X1,empty_set),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_63,plain,
    ( in(X1,X3)
    | X1 != X2
    | X3 != singleton(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_64,plain,
    ( X1 = X3
    | ~ in(X1,X2)
    | X2 != singleton(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_65,plain,
    ( in(X1,X2)
    | ~ in(X1,X3)
    | X3 != set_difference(X2,X4) ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

cnf(c_0_66,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_56]) ).

cnf(c_0_67,lemma,
    set_difference(X1,set_union2(X1,X2)) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_58]),c_0_59]) ).

cnf(c_0_68,plain,
    set_union2(X1,X2) = set_union2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_60]) ).

cnf(c_0_69,lemma,
    ( ~ subset(X1,empty_set)
    | ~ in(X2,X1) ),
    inference(spm,[status(thm)],[c_0_61,c_0_62]) ).

cnf(c_0_70,plain,
    in(X1,singleton(X1)),
    inference(er,[status(thm)],[inference(er,[status(thm)],[c_0_63])]) ).

fof(c_0_71,lemma,
    ! [X81,X82] :
      ( ( set_difference(X81,X82) != empty_set
        | subset(X81,X82) )
      & ( ~ subset(X81,X82)
        | set_difference(X81,X82) = empty_set ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])]) ).

cnf(c_0_72,plain,
    ( X1 = X2
    | ~ in(X1,singleton(X2)) ),
    inference(er,[status(thm)],[c_0_64]) ).

cnf(c_0_73,plain,
    ( in(X1,X2)
    | ~ in(X1,set_difference(X2,X3)) ),
    inference(er,[status(thm)],[c_0_65]) ).

cnf(c_0_74,plain,
    ( in(esk2_1(X1),X1)
    | X1 = empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_33]) ).

cnf(c_0_75,plain,
    set_difference(X1,set_difference(X1,X2)) = set_difference(X2,set_difference(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_66,c_0_38]),c_0_38]) ).

cnf(c_0_76,lemma,
    set_difference(X1,set_union2(X2,X1)) = empty_set,
    inference(spm,[status(thm)],[c_0_67,c_0_68]) ).

cnf(c_0_77,lemma,
    ~ subset(singleton(X1),empty_set),
    inference(spm,[status(thm)],[c_0_69,c_0_70]) ).

cnf(c_0_78,lemma,
    ( subset(X1,X2)
    | set_difference(X1,X2) != empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

fof(c_0_79,plain,
    ! [X1,X2] :
      ( in(X1,X2)
     => ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[antisymmetry_r2_hidden]) ).

fof(c_0_80,lemma,
    ! [X150,X151] :
      ( ( ~ disjoint(X150,X151)
        | set_difference(X150,X151) = X150 )
      & ( set_difference(X150,X151) != X150
        | disjoint(X150,X151) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t83_xboole_1])]) ).

cnf(c_0_81,lemma,
    ( in(esk11_2(X1,X2),X1)
    | disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_82,lemma,
    ( esk11_2(X1,singleton(X2)) = X2
    | disjoint(X1,singleton(X2)) ),
    inference(spm,[status(thm)],[c_0_72,c_0_53]) ).

cnf(c_0_83,plain,
    ( set_difference(X1,X2) = empty_set
    | in(esk2_1(set_difference(X1,X2)),X1) ),
    inference(spm,[status(thm)],[c_0_73,c_0_74]) ).

cnf(c_0_84,lemma,
    set_difference(set_union2(X1,X2),set_difference(X1,X2)) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_75,c_0_57]),c_0_76]),c_0_49]) ).

cnf(c_0_85,plain,
    ( esk2_1(singleton(X1)) = X1
    | singleton(X1) = empty_set ),
    inference(spm,[status(thm)],[c_0_72,c_0_74]) ).

cnf(c_0_86,lemma,
    singleton(X1) != empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_78]),c_0_49]) ).

fof(c_0_87,plain,
    ! [X5,X6] :
      ( ~ in(X5,X6)
      | ~ in(X6,X5) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_79])]) ).

cnf(c_0_88,lemma,
    ( set_difference(X1,X2) = X1
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_80]) ).

cnf(c_0_89,lemma,
    ( disjoint(X1,singleton(X2))
    | in(X2,X1) ),
    inference(spm,[status(thm)],[c_0_81,c_0_82]) ).

cnf(c_0_90,lemma,
    ( X1 = empty_set
    | in(esk2_1(X1),set_union2(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_83,c_0_84]) ).

cnf(c_0_91,plain,
    esk2_1(singleton(X1)) = X1,
    inference(sr,[status(thm)],[c_0_85,c_0_86]) ).

fof(c_0_92,plain,
    ! [X46,X47,X48,X49,X50] :
      ( ( ~ subset(X46,X47)
        | ~ in(X48,X46)
        | in(X48,X47) )
      & ( in(esk5_2(X49,X50),X49)
        | subset(X49,X50) )
      & ( ~ in(esk5_2(X49,X50),X50)
        | subset(X49,X50) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_tarski])])])])])]) ).

fof(c_0_93,plain,
    ! [X70,X71] :
      ( ( ~ disjoint(X70,X71)
        | set_intersection2(X70,X71) = empty_set )
      & ( set_intersection2(X70,X71) != empty_set
        | disjoint(X70,X71) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])]) ).

cnf(c_0_94,plain,
    ( ~ in(X1,X2)
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_87]) ).

cnf(c_0_95,lemma,
    ( set_difference(X1,singleton(X2)) = X1
    | in(X2,X1) ),
    inference(spm,[status(thm)],[c_0_88,c_0_89]) ).

cnf(c_0_96,lemma,
    in(X1,set_union2(X2,singleton(X1))),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_90,c_0_91]),c_0_86]) ).

cnf(c_0_97,plain,
    ( in(esk5_2(X1,X2),X1)
    | subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_98,plain,
    ( disjoint(X1,X2)
    | set_intersection2(X1,X2) != empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_93]) ).

cnf(c_0_99,lemma,
    ( set_difference(X1,singleton(X2)) = X1
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_94,c_0_95]) ).

cnf(c_0_100,lemma,
    in(X1,set_union2(singleton(X1),X2)),
    inference(spm,[status(thm)],[c_0_96,c_0_68]) ).

cnf(c_0_101,plain,
    ( subset(X1,X2)
    | ~ in(esk5_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_102,plain,
    ( esk5_2(singleton(X1),X2) = X1
    | subset(singleton(X1),X2) ),
    inference(spm,[status(thm)],[c_0_72,c_0_97]) ).

cnf(c_0_103,plain,
    ( disjoint(X1,X2)
    | set_difference(X1,set_difference(X1,X2)) != empty_set ),
    inference(rw,[status(thm)],[c_0_98,c_0_38]) ).

cnf(c_0_104,lemma,
    set_difference(X1,singleton(set_union2(singleton(X1),X2))) = X1,
    inference(spm,[status(thm)],[c_0_99,c_0_100]) ).

cnf(c_0_105,lemma,
    subset(X1,set_union2(X2,X1)),
    inference(spm,[status(thm)],[c_0_47,c_0_68]) ).

cnf(c_0_106,plain,
    ( subset(singleton(X1),X2)
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_101,c_0_102]) ).

cnf(c_0_107,lemma,
    disjoint(X1,singleton(set_union2(singleton(X1),X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_103,c_0_104]),c_0_59])]) ).

cnf(c_0_108,lemma,
    set_union2(X1,set_union2(X2,X1)) = set_union2(X2,X1),
    inference(spm,[status(thm)],[c_0_46,c_0_105]) ).

cnf(c_0_109,lemma,
    ( disjoint(X1,X2)
    | subset(singleton(esk11_2(X1,X2)),X2) ),
    inference(spm,[status(thm)],[c_0_106,c_0_53]) ).

cnf(c_0_110,lemma,
    disjoint(X1,singleton(set_union2(X2,singleton(X1)))),
    inference(spm,[status(thm)],[c_0_107,c_0_108]) ).

cnf(c_0_111,lemma,
    ( set_union2(X1,singleton(esk11_2(X2,X1))) = X1
    | disjoint(X2,X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_109]),c_0_68]) ).

fof(c_0_112,plain,
    ! [X86,X87] :
      ( ~ disjoint(X86,X87)
      | disjoint(X87,X86) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])]) ).

cnf(c_0_113,lemma,
    ( disjoint(esk11_2(X1,X2),singleton(X2))
    | disjoint(X1,X2) ),
    inference(spm,[status(thm)],[c_0_110,c_0_111]) ).

cnf(c_0_114,lemma,
    ( esk11_2(singleton(X1),X2) = X1
    | disjoint(singleton(X1),X2) ),
    inference(spm,[status(thm)],[c_0_72,c_0_81]) ).

cnf(c_0_115,plain,
    ( disjoint(X2,X1)
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_112]) ).

cnf(c_0_116,lemma,
    ( disjoint(singleton(X1),X2)
    | disjoint(X1,singleton(X2)) ),
    inference(spm,[status(thm)],[c_0_113,c_0_114]) ).

fof(c_0_117,plain,
    ! [X105,X106] :
      ( ( ~ in(esk10_2(X105,X106),X105)
        | ~ in(esk10_2(X105,X106),X106)
        | X105 = X106 )
      & ( in(esk10_2(X105,X106),X105)
        | in(esk10_2(X105,X106),X106)
        | X105 = X106 ) ),
    inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t2_tarski])])])]) ).

fof(c_0_118,lemma,
    ! [X116,X117] : set_union2(X116,set_difference(X117,X116)) = set_union2(X116,X117),
    inference(variable_rename,[status(thm)],[t39_xboole_1]) ).

cnf(c_0_119,lemma,
    ( disjoint(X1,singleton(X2))
    | disjoint(X2,singleton(X1)) ),
    inference(spm,[status(thm)],[c_0_115,c_0_116]) ).

cnf(c_0_120,plain,
    ( in(esk10_2(X1,X2),X1)
    | in(esk10_2(X1,X2),X2)
    | X1 = X2 ),
    inference(split_conjunct,[status(thm)],[c_0_117]) ).

cnf(c_0_121,lemma,
    set_difference(set_union2(X1,X2),X1) = set_difference(X2,X1),
    inference(spm,[status(thm)],[c_0_57,c_0_68]) ).

cnf(c_0_122,lemma,
    set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_118]) ).

fof(c_0_123,lemma,
    ! [X112,X113] : subset(set_difference(X112,X113),X112),
    inference(variable_rename,[status(thm)],[t36_xboole_1]) ).

cnf(c_0_124,lemma,
    ( ~ in(X1,X2)
    | ~ in(X1,X3)
    | ~ disjoint(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_125,lemma,
    disjoint(X1,singleton(X1)),
    inference(ef,[status(thm)],[c_0_119]) ).

cnf(c_0_126,plain,
    ( empty_set = X1
    | in(esk10_2(empty_set,X1),X1) ),
    inference(spm,[status(thm)],[c_0_52,c_0_120]) ).

fof(c_0_127,plain,
    ! [X37,X38,X39,X40,X41,X42,X43,X44] :
      ( ( ~ in(X40,X39)
        | in(X40,X37)
        | in(X40,X38)
        | X39 != set_union2(X37,X38) )
      & ( ~ in(X41,X37)
        | in(X41,X39)
        | X39 != set_union2(X37,X38) )
      & ( ~ in(X41,X38)
        | in(X41,X39)
        | X39 != set_union2(X37,X38) )
      & ( ~ in(esk4_3(X42,X43,X44),X42)
        | ~ in(esk4_3(X42,X43,X44),X44)
        | X44 = set_union2(X42,X43) )
      & ( ~ in(esk4_3(X42,X43,X44),X43)
        | ~ in(esk4_3(X42,X43,X44),X44)
        | X44 = set_union2(X42,X43) )
      & ( in(esk4_3(X42,X43,X44),X44)
        | in(esk4_3(X42,X43,X44),X42)
        | in(esk4_3(X42,X43,X44),X43)
        | X44 = set_union2(X42,X43) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d2_xboole_0])])])])])]) ).

cnf(c_0_128,lemma,
    set_difference(set_difference(X1,X2),X2) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_121,c_0_122]),c_0_121]) ).

cnf(c_0_129,lemma,
    subset(set_difference(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_123]) ).

cnf(c_0_130,lemma,
    ( ~ in(X1,singleton(X2))
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_124,c_0_125]) ).

cnf(c_0_131,plain,
    esk10_2(empty_set,singleton(X1)) = X1,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_72,c_0_126]),c_0_86]) ).

cnf(c_0_132,plain,
    ( in(X1,X3)
    | ~ in(X1,X2)
    | X3 != set_union2(X4,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_127]) ).

fof(c_0_133,plain,
    ! [X28,X29,X30,X31,X32,X33,X34,X35] :
      ( ( ~ in(X31,X30)
        | X31 = X28
        | X31 = X29
        | X30 != unordered_pair(X28,X29) )
      & ( X32 != X28
        | in(X32,X30)
        | X30 != unordered_pair(X28,X29) )
      & ( X32 != X29
        | in(X32,X30)
        | X30 != unordered_pair(X28,X29) )
      & ( esk3_3(X33,X34,X35) != X33
        | ~ in(esk3_3(X33,X34,X35),X35)
        | X35 = unordered_pair(X33,X34) )
      & ( esk3_3(X33,X34,X35) != X34
        | ~ in(esk3_3(X33,X34,X35),X35)
        | X35 = unordered_pair(X33,X34) )
      & ( in(esk3_3(X33,X34,X35),X35)
        | esk3_3(X33,X34,X35) = X33
        | esk3_3(X33,X34,X35) = X34
        | X35 = unordered_pair(X33,X34) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d2_tarski])])])])])]) ).

cnf(c_0_134,lemma,
    ( set_union2(X1,X2) = X2
    | set_difference(X1,X2) != empty_set ),
    inference(spm,[status(thm)],[c_0_46,c_0_78]) ).

cnf(c_0_135,lemma,
    set_difference(X1,set_difference(X1,set_difference(X2,X1))) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_75,c_0_128]),c_0_59]) ).

cnf(c_0_136,lemma,
    set_union2(X1,set_difference(X1,X2)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_129]),c_0_68]) ).

cnf(c_0_137,lemma,
    ~ in(X1,X1),
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_130,c_0_126]),c_0_131]),c_0_86]) ).

cnf(c_0_138,plain,
    ( in(X1,set_union2(X2,X3))
    | ~ in(X1,X3) ),
    inference(er,[status(thm)],[c_0_132]) ).

cnf(c_0_139,plain,
    ( in(X1,X3)
    | X1 != X2
    | X3 != unordered_pair(X4,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_133]) ).

cnf(c_0_140,lemma,
    set_difference(X1,set_difference(X2,X1)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_134,c_0_135]),c_0_136]) ).

cnf(c_0_141,lemma,
    ~ in(set_union2(X1,X2),X2),
    inference(spm,[status(thm)],[c_0_137,c_0_138]) ).

cnf(c_0_142,plain,
    ( X1 = X3
    | X1 = X4
    | ~ in(X1,X2)
    | X2 != unordered_pair(X3,X4) ),
    inference(split_conjunct,[status(thm)],[c_0_133]) ).

cnf(c_0_143,plain,
    in(X1,unordered_pair(X2,X1)),
    inference(er,[status(thm)],[inference(er,[status(thm)],[c_0_139])]) ).

cnf(c_0_144,lemma,
    disjoint(X1,set_difference(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_103,c_0_140]),c_0_59])]) ).

cnf(c_0_145,lemma,
    set_difference(X1,singleton(set_union2(X2,X1))) = X1,
    inference(spm,[status(thm)],[c_0_141,c_0_95]) ).

cnf(c_0_146,plain,
    ( X1 = X2
    | X1 = X3
    | ~ in(X1,unordered_pair(X3,X2)) ),
    inference(er,[status(thm)],[c_0_142]) ).

cnf(c_0_147,lemma,
    ~ subset(unordered_pair(X1,X2),empty_set),
    inference(spm,[status(thm)],[c_0_69,c_0_143]) ).

cnf(c_0_148,plain,
    ( set_intersection2(X1,X2) = empty_set
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_93]) ).

cnf(c_0_149,lemma,
    disjoint(singleton(set_union2(X1,X2)),X2),
    inference(spm,[status(thm)],[c_0_144,c_0_145]) ).

fof(c_0_150,plain,
    ! [X15,X16] :
      ( ( subset(X15,X16)
        | X15 != X16 )
      & ( subset(X16,X15)
        | X15 != X16 )
      & ( ~ subset(X15,X16)
        | ~ subset(X16,X15)
        | X15 = X16 ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])]) ).

cnf(c_0_151,lemma,
    ( set_difference(X1,singleton(esk5_2(X2,X1))) = X1
    | subset(X2,X1) ),
    inference(spm,[status(thm)],[c_0_101,c_0_95]) ).

cnf(c_0_152,plain,
    ( esk5_2(unordered_pair(X1,X2),X3) = X1
    | esk5_2(unordered_pair(X1,X2),X3) = X2
    | subset(unordered_pair(X1,X2),X3) ),
    inference(spm,[status(thm)],[c_0_146,c_0_97]) ).

cnf(c_0_153,lemma,
    unordered_pair(X1,X2) != empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147,c_0_78]),c_0_49]) ).

cnf(c_0_154,plain,
    ( set_difference(X1,set_difference(X1,X2)) = empty_set
    | ~ disjoint(X1,X2) ),
    inference(rw,[status(thm)],[c_0_148,c_0_38]) ).

cnf(c_0_155,lemma,
    disjoint(singleton(X1),set_difference(X1,X2)),
    inference(spm,[status(thm)],[c_0_149,c_0_136]) ).

fof(c_0_156,negated_conjecture,
    ~ ! [X1] : unordered_pair(X1,X1) = singleton(X1),
    inference(assume_negation,[status(cth)],[t69_enumset1]) ).

cnf(c_0_157,plain,
    ( X1 = X2
    | ~ subset(X1,X2)
    | ~ subset(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_150]) ).

cnf(c_0_158,plain,
    ( empty_set = X1
    | subset(singleton(esk10_2(empty_set,X1)),X1) ),
    inference(spm,[status(thm)],[c_0_106,c_0_126]) ).

cnf(c_0_159,lemma,
    ( disjoint(singleton(esk5_2(X1,X2)),X2)
    | subset(X1,X2) ),
    inference(spm,[status(thm)],[c_0_144,c_0_151]) ).

cnf(c_0_160,plain,
    ( esk5_2(unordered_pair(X1,X1),X2) = X1
    | subset(unordered_pair(X1,X1),X2) ),
    inference(er,[status(thm)],[inference(ef,[status(thm)],[c_0_152])]) ).

cnf(c_0_161,plain,
    ( esk10_2(empty_set,unordered_pair(X1,X2)) = X1
    | esk10_2(empty_set,unordered_pair(X1,X2)) = X2 ),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_146,c_0_126]),c_0_153]) ).

cnf(c_0_162,plain,
    ( X1 = empty_set
    | ~ disjoint(X1,set_difference(X1,X2))
    | ~ disjoint(X1,X2) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_154,c_0_154]),c_0_49]) ).

cnf(c_0_163,lemma,
    set_difference(singleton(X1),set_difference(X1,X2)) = singleton(X1),
    inference(spm,[status(thm)],[c_0_88,c_0_155]) ).

fof(c_0_164,negated_conjecture,
    unordered_pair(esk13_0,esk13_0) != singleton(esk13_0),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_156])])]) ).

cnf(c_0_165,plain,
    ( singleton(esk10_2(empty_set,X1)) = X1
    | empty_set = X1
    | ~ subset(X1,singleton(esk10_2(empty_set,X1))) ),
    inference(spm,[status(thm)],[c_0_157,c_0_158]) ).

cnf(c_0_166,lemma,
    ( disjoint(singleton(X1),X2)
    | subset(unordered_pair(X1,X1),X2) ),
    inference(spm,[status(thm)],[c_0_159,c_0_160]) ).

cnf(c_0_167,plain,
    esk10_2(empty_set,unordered_pair(X1,X1)) = X1,
    inference(er,[status(thm)],[inference(ef,[status(thm)],[c_0_161])]) ).

cnf(c_0_168,lemma,
    ~ disjoint(singleton(X1),singleton(X1)),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_162,c_0_163]),c_0_155])]),c_0_86]) ).

cnf(c_0_169,negated_conjecture,
    unordered_pair(esk13_0,esk13_0) != singleton(esk13_0),
    inference(split_conjunct,[status(thm)],[c_0_164]) ).

cnf(c_0_170,lemma,
    unordered_pair(X1,X1) = singleton(X1),
    inference(sr,[status(thm)],[inference(sr,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_165,c_0_166]),c_0_167]),c_0_167]),c_0_153]),c_0_168]) ).

cnf(c_0_171,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_169,c_0_170])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SEU142+2 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n009.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Wed Aug 23 12:37:21 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.57  start to proof: theBenchmark
% 47.62/47.72  % Version  : CSE_E---1.5
% 47.62/47.72  % Problem  : theBenchmark.p
% 47.62/47.72  % Proof found
% 47.62/47.72  % SZS status Theorem for theBenchmark.p
% 47.62/47.72  % SZS output start Proof
% See solution above
% 47.62/47.73  % Total time : 47.137000 s
% 47.62/47.73  % SZS output end Proof
% 47.62/47.73  % Total time : 47.143000 s
%------------------------------------------------------------------------------