TSTP Solution File: SEU141+2 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SEU141+2 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art09.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 04:51:12 EST 2010

% Result   : Theorem 0.26s
% Output   : CNFRefutation 0.26s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   16
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   51 (  24 unt;   0 def)
%            Number of atoms       :   91 (  50 equ)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :   67 (  27   ~;  31   |;   5   &)
%                                         (   3 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   3 con; 0-2 aty)
%            Number of variables   :   62 (   2 sgn  32   !;   4   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(1,axiom,
    ! [X1,X2] : subset(set_difference(X1,X2),X1),
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',t36_xboole_1) ).

fof(3,axiom,
    ! [X1] : set_intersection2(X1,empty_set) = empty_set,
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',t2_boole) ).

fof(10,conjecture,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_difference(X1,X2) = X1 ),
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',t83_xboole_1) ).

fof(15,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',t3_boole) ).

fof(30,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_intersection2(X1,X2) = X1 ),
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',t28_xboole_1) ).

fof(32,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_intersection2(X1,X2) = empty_set ),
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',d7_xboole_0) ).

fof(35,axiom,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',t48_xboole_1) ).

fof(42,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/tmp/tmpoLYAOR/sel_SEU141+2.p_1',commutativity_k3_xboole_0) ).

fof(58,negated_conjecture,
    ~ ! [X1,X2] :
        ( disjoint(X1,X2)
      <=> set_difference(X1,X2) = X1 ),
    inference(assume_negation,[status(cth)],[10]) ).

fof(69,plain,
    ! [X3,X4] : subset(set_difference(X3,X4),X3),
    inference(variable_rename,[status(thm)],[1]) ).

cnf(70,plain,
    subset(set_difference(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[69]) ).

fof(73,plain,
    ! [X2] : set_intersection2(X2,empty_set) = empty_set,
    inference(variable_rename,[status(thm)],[3]) ).

cnf(74,plain,
    set_intersection2(X1,empty_set) = empty_set,
    inference(split_conjunct,[status(thm)],[73]) ).

fof(93,negated_conjecture,
    ? [X1,X2] :
      ( ( ~ disjoint(X1,X2)
        | set_difference(X1,X2) != X1 )
      & ( disjoint(X1,X2)
        | set_difference(X1,X2) = X1 ) ),
    inference(fof_nnf,[status(thm)],[58]) ).

fof(94,negated_conjecture,
    ? [X3,X4] :
      ( ( ~ disjoint(X3,X4)
        | set_difference(X3,X4) != X3 )
      & ( disjoint(X3,X4)
        | set_difference(X3,X4) = X3 ) ),
    inference(variable_rename,[status(thm)],[93]) ).

fof(95,negated_conjecture,
    ( ( ~ disjoint(esk2_0,esk3_0)
      | set_difference(esk2_0,esk3_0) != esk2_0 )
    & ( disjoint(esk2_0,esk3_0)
      | set_difference(esk2_0,esk3_0) = esk2_0 ) ),
    inference(skolemize,[status(esa)],[94]) ).

cnf(96,negated_conjecture,
    ( set_difference(esk2_0,esk3_0) = esk2_0
    | disjoint(esk2_0,esk3_0) ),
    inference(split_conjunct,[status(thm)],[95]) ).

cnf(97,negated_conjecture,
    ( set_difference(esk2_0,esk3_0) != esk2_0
    | ~ disjoint(esk2_0,esk3_0) ),
    inference(split_conjunct,[status(thm)],[95]) ).

fof(107,plain,
    ! [X2] : set_difference(X2,empty_set) = X2,
    inference(variable_rename,[status(thm)],[15]) ).

cnf(108,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[107]) ).

fof(154,plain,
    ! [X1,X2] :
      ( ~ subset(X1,X2)
      | set_intersection2(X1,X2) = X1 ),
    inference(fof_nnf,[status(thm)],[30]) ).

fof(155,plain,
    ! [X3,X4] :
      ( ~ subset(X3,X4)
      | set_intersection2(X3,X4) = X3 ),
    inference(variable_rename,[status(thm)],[154]) ).

cnf(156,plain,
    ( set_intersection2(X1,X2) = X1
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[155]) ).

fof(168,plain,
    ! [X1,X2] :
      ( ( ~ disjoint(X1,X2)
        | set_intersection2(X1,X2) = empty_set )
      & ( set_intersection2(X1,X2) != empty_set
        | disjoint(X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[32]) ).

fof(169,plain,
    ! [X3,X4] :
      ( ( ~ disjoint(X3,X4)
        | set_intersection2(X3,X4) = empty_set )
      & ( set_intersection2(X3,X4) != empty_set
        | disjoint(X3,X4) ) ),
    inference(variable_rename,[status(thm)],[168]) ).

cnf(170,plain,
    ( disjoint(X1,X2)
    | set_intersection2(X1,X2) != empty_set ),
    inference(split_conjunct,[status(thm)],[169]) ).

cnf(171,plain,
    ( set_intersection2(X1,X2) = empty_set
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[169]) ).

fof(186,plain,
    ! [X3,X4] : set_difference(X3,set_difference(X3,X4)) = set_intersection2(X3,X4),
    inference(variable_rename,[status(thm)],[35]) ).

cnf(187,plain,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(split_conjunct,[status(thm)],[186]) ).

fof(211,plain,
    ! [X3,X4] : set_intersection2(X3,X4) = set_intersection2(X4,X3),
    inference(variable_rename,[status(thm)],[42]) ).

cnf(212,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[211]) ).

cnf(268,plain,
    set_difference(X1,set_difference(X1,empty_set)) = empty_set,
    inference(rw,[status(thm)],[74,187,theory(equality)]),
    [unfolding] ).

cnf(269,plain,
    set_difference(X1,set_difference(X1,X2)) = set_difference(X2,set_difference(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[212,187,theory(equality)]),187,theory(equality)]),
    [unfolding] ).

cnf(274,plain,
    ( set_difference(X1,set_difference(X1,X2)) = X1
    | ~ subset(X1,X2) ),
    inference(rw,[status(thm)],[156,187,theory(equality)]),
    [unfolding] ).

cnf(275,plain,
    ( set_difference(X1,set_difference(X1,X2)) = empty_set
    | ~ disjoint(X1,X2) ),
    inference(rw,[status(thm)],[171,187,theory(equality)]),
    [unfolding] ).

cnf(276,plain,
    ( disjoint(X1,X2)
    | set_difference(X1,set_difference(X1,X2)) != empty_set ),
    inference(rw,[status(thm)],[170,187,theory(equality)]),
    [unfolding] ).

cnf(286,plain,
    set_difference(X1,X1) = empty_set,
    inference(rw,[status(thm)],[268,108,theory(equality)]) ).

cnf(319,negated_conjecture,
    ( set_difference(esk2_0,set_difference(esk2_0,esk3_0)) = empty_set
    | set_difference(esk2_0,esk3_0) = esk2_0 ),
    inference(spm,[status(thm)],[275,96,theory(equality)]) ).

cnf(392,plain,
    ( X1 = set_difference(X2,set_difference(X2,X1))
    | ~ subset(X1,X2) ),
    inference(spm,[status(thm)],[269,274,theory(equality)]) ).

cnf(3000,negated_conjecture,
    ( set_difference(esk2_0,empty_set) = set_difference(esk2_0,esk3_0)
    | set_difference(esk2_0,esk3_0) = esk2_0
    | ~ subset(set_difference(esk2_0,esk3_0),esk2_0) ),
    inference(spm,[status(thm)],[392,319,theory(equality)]) ).

cnf(3067,negated_conjecture,
    ( esk2_0 = set_difference(esk2_0,esk3_0)
    | set_difference(esk2_0,esk3_0) = esk2_0
    | ~ subset(set_difference(esk2_0,esk3_0),esk2_0) ),
    inference(rw,[status(thm)],[3000,108,theory(equality)]) ).

cnf(3068,negated_conjecture,
    ( esk2_0 = set_difference(esk2_0,esk3_0)
    | set_difference(esk2_0,esk3_0) = esk2_0
    | $false ),
    inference(rw,[status(thm)],[3067,70,theory(equality)]) ).

cnf(3069,negated_conjecture,
    esk2_0 = set_difference(esk2_0,esk3_0),
    inference(cn,[status(thm)],[3068,theory(equality)]) ).

cnf(3095,negated_conjecture,
    ( disjoint(esk2_0,esk3_0)
    | set_difference(esk2_0,esk2_0) != empty_set ),
    inference(spm,[status(thm)],[276,3069,theory(equality)]) ).

cnf(3135,negated_conjecture,
    ( $false
    | ~ disjoint(esk2_0,esk3_0) ),
    inference(rw,[status(thm)],[97,3069,theory(equality)]) ).

cnf(3136,negated_conjecture,
    ~ disjoint(esk2_0,esk3_0),
    inference(cn,[status(thm)],[3135,theory(equality)]) ).

cnf(3146,negated_conjecture,
    ( disjoint(esk2_0,esk3_0)
    | $false ),
    inference(rw,[status(thm)],[3095,286,theory(equality)]) ).

cnf(3147,negated_conjecture,
    disjoint(esk2_0,esk3_0),
    inference(cn,[status(thm)],[3146,theory(equality)]) ).

cnf(3170,negated_conjecture,
    $false,
    inference(rw,[status(thm)],[3136,3147,theory(equality)]) ).

cnf(3171,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[3170,theory(equality)]) ).

cnf(3172,negated_conjecture,
    $false,
    3171,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SEU/SEU141+2.p
% --creating new selector for []
% -running prover on /tmp/tmpoLYAOR/sel_SEU141+2.p_1 with time limit 29
% -prover status Theorem
% Problem SEU141+2.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SEU/SEU141+2.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SEU/SEU141+2.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------