TSTP Solution File: SEU140+2 by ET---2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ET---2.0
% Problem  : SEU140+2 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_ET %s %d

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 09:17:05 EDT 2022

% Result   : Theorem 0.24s 1.43s
% Output   : CNFRefutation 0.24s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :   20
% Syntax   : Number of formulae    :  102 (  61 unt;   0 def)
%            Number of atoms       :  187 (  69 equ)
%            Maximal formula atoms :   20 (   1 avg)
%            Number of connectives :  142 (  57   ~;  51   |;  23   &)
%                                         (   3 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    6 (   4 usr;   1 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   5 con; 0-3 aty)
%            Number of variables   :  186 (  27 sgn  88   !;   3   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t2_boole,axiom,
    ! [X1] : set_intersection2(X1,empty_set) = empty_set,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t2_boole) ).

fof(t48_xboole_1,lemma,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t48_xboole_1) ).

fof(t3_boole,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t3_boole) ).

fof(t6_boole,axiom,
    ! [X1] :
      ( empty(X1)
     => X1 = empty_set ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t6_boole) ).

fof(rc1_xboole_0,axiom,
    ? [X1] : empty(X1),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',rc1_xboole_0) ).

fof(t40_xboole_1,lemma,
    ! [X1,X2] : set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t40_xboole_1) ).

fof(t12_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_union2(X1,X2) = X2 ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t12_xboole_1) ).

fof(t36_xboole_1,lemma,
    ! [X1,X2] : subset(set_difference(X1,X2),X1),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t36_xboole_1) ).

fof(t1_boole,axiom,
    ! [X1] : set_union2(X1,empty_set) = X1,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t1_boole) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',commutativity_k3_xboole_0) ).

fof(t39_xboole_1,lemma,
    ! [X1,X2] : set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t39_xboole_1) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [X1,X2] : set_union2(X1,X2) = set_union2(X2,X1),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',commutativity_k2_xboole_0) ).

fof(t4_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] : ~ in(X3,set_intersection2(X1,X2)) )
      & ~ ( ? [X3] : in(X3,set_intersection2(X1,X2))
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t4_xboole_0) ).

fof(t63_xboole_1,conjecture,
    ! [X1,X2,X3] :
      ( ( subset(X1,X2)
        & disjoint(X2,X3) )
     => disjoint(X1,X3) ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t63_xboole_1) ).

fof(d4_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',d4_xboole_0) ).

fof(d3_tarski,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',d3_tarski) ).

fof(t28_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_intersection2(X1,X2) = X1 ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t28_xboole_1) ).

fof(symmetry_r1_xboole_0,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
     => disjoint(X2,X1) ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',symmetry_r1_xboole_0) ).

fof(t3_xboole_0,lemma,
    ! [X1,X2] :
      ( ~ ( ~ disjoint(X1,X2)
          & ! [X3] :
              ~ ( in(X3,X1)
                & in(X3,X2) ) )
      & ~ ( ? [X3] :
              ( in(X3,X1)
              & in(X3,X2) )
          & disjoint(X1,X2) ) ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t3_xboole_0) ).

fof(t3_xboole_1,lemma,
    ! [X1] :
      ( subset(X1,empty_set)
     => X1 = empty_set ),
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t3_xboole_1) ).

fof(c_0_20,plain,
    ! [X2] : set_intersection2(X2,empty_set) = empty_set,
    inference(variable_rename,[status(thm)],[t2_boole]) ).

fof(c_0_21,lemma,
    ! [X3,X4] : set_difference(X3,set_difference(X3,X4)) = set_intersection2(X3,X4),
    inference(variable_rename,[status(thm)],[t48_xboole_1]) ).

cnf(c_0_22,plain,
    set_intersection2(X1,empty_set) = empty_set,
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_23,lemma,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_21]) ).

fof(c_0_24,plain,
    ! [X2] : set_difference(X2,empty_set) = X2,
    inference(variable_rename,[status(thm)],[t3_boole]) ).

fof(c_0_25,plain,
    ! [X2] :
      ( ~ empty(X2)
      | X2 = empty_set ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t6_boole])]) ).

fof(c_0_26,plain,
    empty(esk12_0),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[rc1_xboole_0])]) ).

fof(c_0_27,lemma,
    ! [X3,X4] : set_difference(set_union2(X3,X4),X4) = set_difference(X3,X4),
    inference(variable_rename,[status(thm)],[t40_xboole_1]) ).

fof(c_0_28,lemma,
    ! [X3,X4] :
      ( ~ subset(X3,X4)
      | set_union2(X3,X4) = X4 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])]) ).

cnf(c_0_29,plain,
    set_difference(X1,set_difference(X1,empty_set)) = empty_set,
    inference(rw,[status(thm)],[c_0_22,c_0_23]) ).

cnf(c_0_30,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_31,plain,
    ( X1 = empty_set
    | ~ empty(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_32,plain,
    empty(esk12_0),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_33,lemma,
    set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_34,lemma,
    ( set_union2(X1,X2) = X2
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_35,plain,
    set_difference(X1,X1) = empty_set,
    inference(rw,[status(thm)],[c_0_29,c_0_30]) ).

cnf(c_0_36,plain,
    empty_set = esk12_0,
    inference(spm,[status(thm)],[c_0_31,c_0_32]) ).

fof(c_0_37,lemma,
    ! [X3,X4] : subset(set_difference(X3,X4),X3),
    inference(variable_rename,[status(thm)],[t36_xboole_1]) ).

fof(c_0_38,plain,
    ! [X2] : set_union2(X2,empty_set) = X2,
    inference(variable_rename,[status(thm)],[t1_boole]) ).

fof(c_0_39,plain,
    ! [X3,X4] : set_intersection2(X3,X4) = set_intersection2(X4,X3),
    inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0]) ).

fof(c_0_40,lemma,
    ! [X3,X4] : set_union2(X3,set_difference(X4,X3)) = set_union2(X3,X4),
    inference(variable_rename,[status(thm)],[t39_xboole_1]) ).

cnf(c_0_41,lemma,
    ( set_difference(X1,X2) = esk12_0
    | ~ subset(X1,X2) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_34]),c_0_35]),c_0_36]) ).

cnf(c_0_42,lemma,
    subset(set_difference(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_43,plain,
    set_union2(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

fof(c_0_44,plain,
    ! [X3,X4] : set_union2(X3,X4) = set_union2(X4,X3),
    inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0]) ).

fof(c_0_45,lemma,
    ! [X4,X5,X4,X5,X7] :
      ( ( disjoint(X4,X5)
        | in(esk5_2(X4,X5),set_intersection2(X4,X5)) )
      & ( ~ in(X7,set_intersection2(X4,X5))
        | ~ disjoint(X4,X5) ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t4_xboole_0])])])])])])]) ).

fof(c_0_46,negated_conjecture,
    ~ ! [X1,X2,X3] :
        ( ( subset(X1,X2)
          & disjoint(X2,X3) )
       => disjoint(X1,X3) ),
    inference(assume_negation,[status(cth)],[t63_xboole_1]) ).

fof(c_0_47,plain,
    ! [X5,X6,X7,X8,X8,X5,X6,X7] :
      ( ( in(X8,X5)
        | ~ in(X8,X7)
        | X7 != set_difference(X5,X6) )
      & ( ~ in(X8,X6)
        | ~ in(X8,X7)
        | X7 != set_difference(X5,X6) )
      & ( ~ in(X8,X5)
        | in(X8,X6)
        | in(X8,X7)
        | X7 != set_difference(X5,X6) )
      & ( ~ in(esk10_3(X5,X6,X7),X7)
        | ~ in(esk10_3(X5,X6,X7),X5)
        | in(esk10_3(X5,X6,X7),X6)
        | X7 = set_difference(X5,X6) )
      & ( in(esk10_3(X5,X6,X7),X5)
        | in(esk10_3(X5,X6,X7),X7)
        | X7 = set_difference(X5,X6) )
      & ( ~ in(esk10_3(X5,X6,X7),X6)
        | in(esk10_3(X5,X6,X7),X7)
        | X7 = set_difference(X5,X6) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])]) ).

fof(c_0_48,plain,
    ! [X4,X5,X6,X4,X5] :
      ( ( ~ subset(X4,X5)
        | ~ in(X6,X4)
        | in(X6,X5) )
      & ( in(esk9_2(X4,X5),X4)
        | subset(X4,X5) )
      & ( ~ in(esk9_2(X4,X5),X5)
        | subset(X4,X5) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_tarski])])])])])])]) ).

cnf(c_0_49,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_50,lemma,
    set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_51,lemma,
    set_difference(set_difference(X1,X2),X1) = esk12_0,
    inference(spm,[status(thm)],[c_0_41,c_0_42]) ).

cnf(c_0_52,plain,
    set_union2(X1,esk12_0) = X1,
    inference(rw,[status(thm)],[c_0_43,c_0_36]) ).

cnf(c_0_53,plain,
    set_union2(X1,X2) = set_union2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

fof(c_0_54,lemma,
    ! [X3,X4] :
      ( ~ subset(X3,X4)
      | set_intersection2(X3,X4) = X3 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t28_xboole_1])]) ).

cnf(c_0_55,lemma,
    ( ~ disjoint(X1,X2)
    | ~ in(X3,set_intersection2(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

fof(c_0_56,plain,
    ! [X3,X4] :
      ( ~ disjoint(X3,X4)
      | disjoint(X4,X3) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])]) ).

fof(c_0_57,negated_conjecture,
    ( subset(esk1_0,esk2_0)
    & disjoint(esk2_0,esk3_0)
    & ~ disjoint(esk1_0,esk3_0) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_46])])]) ).

cnf(c_0_58,plain,
    ( X1 != set_difference(X2,X3)
    | ~ in(X4,X1)
    | ~ in(X4,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

fof(c_0_59,lemma,
    ! [X4,X5,X4,X5,X7] :
      ( ( in(esk4_2(X4,X5),X4)
        | disjoint(X4,X5) )
      & ( in(esk4_2(X4,X5),X5)
        | disjoint(X4,X5) )
      & ( ~ in(X7,X4)
        | ~ in(X7,X5)
        | ~ disjoint(X4,X5) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])]) ).

cnf(c_0_60,plain,
    ( in(X1,X2)
    | ~ in(X1,X3)
    | ~ subset(X3,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_61,plain,
    set_difference(X1,set_difference(X1,X2)) = set_difference(X2,set_difference(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_49,c_0_23]),c_0_23]) ).

cnf(c_0_62,lemma,
    set_union2(X1,set_difference(X1,X2)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_52]) ).

cnf(c_0_63,lemma,
    set_difference(set_union2(X1,X2),X1) = set_difference(X2,X1),
    inference(spm,[status(thm)],[c_0_33,c_0_53]) ).

cnf(c_0_64,lemma,
    ( set_intersection2(X1,X2) = X1
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

fof(c_0_65,lemma,
    ! [X2] :
      ( ~ subset(X2,empty_set)
      | X2 = empty_set ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t3_xboole_1])]) ).

cnf(c_0_66,lemma,
    ( ~ disjoint(X1,X2)
    | ~ in(X3,set_difference(X1,set_difference(X1,X2))) ),
    inference(rw,[status(thm)],[c_0_55,c_0_23]) ).

cnf(c_0_67,plain,
    ( subset(X1,X2)
    | in(esk9_2(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_68,plain,
    ( disjoint(X1,X2)
    | ~ disjoint(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_56]) ).

cnf(c_0_69,negated_conjecture,
    disjoint(esk2_0,esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_70,plain,
    ( ~ in(X1,set_difference(X2,X3))
    | ~ in(X1,X3) ),
    inference(er,[status(thm)],[c_0_58]) ).

cnf(c_0_71,lemma,
    ( disjoint(X1,X2)
    | in(esk4_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_72,lemma,
    ( in(X1,X2)
    | ~ in(X1,set_difference(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_60,c_0_42]) ).

cnf(c_0_73,lemma,
    ( disjoint(X1,X2)
    | in(esk4_2(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_74,lemma,
    set_union2(set_difference(X1,X2),set_difference(X2,set_difference(X2,X1))) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_61]),c_0_53]),c_0_62]) ).

cnf(c_0_75,lemma,
    set_difference(set_difference(X1,X2),X2) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_63,c_0_50]),c_0_63]) ).

cnf(c_0_76,plain,
    set_difference(X1,X1) = esk12_0,
    inference(rw,[status(thm)],[c_0_35,c_0_36]) ).

cnf(c_0_77,lemma,
    ( set_difference(X1,set_difference(X1,X2)) = X1
    | ~ subset(X1,X2) ),
    inference(rw,[status(thm)],[c_0_64,c_0_23]) ).

cnf(c_0_78,negated_conjecture,
    subset(esk1_0,esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_79,lemma,
    ( X1 = empty_set
    | ~ subset(X1,empty_set) ),
    inference(split_conjunct,[status(thm)],[c_0_65]) ).

cnf(c_0_80,lemma,
    ( subset(set_difference(X1,set_difference(X1,X2)),X3)
    | ~ disjoint(X1,X2) ),
    inference(spm,[status(thm)],[c_0_66,c_0_67]) ).

cnf(c_0_81,negated_conjecture,
    disjoint(esk3_0,esk2_0),
    inference(spm,[status(thm)],[c_0_68,c_0_69]) ).

cnf(c_0_82,lemma,
    ( disjoint(X1,set_difference(X2,X3))
    | ~ in(esk4_2(X1,set_difference(X2,X3)),X3) ),
    inference(spm,[status(thm)],[c_0_70,c_0_71]) ).

cnf(c_0_83,lemma,
    ( disjoint(set_difference(X1,X2),X3)
    | in(esk4_2(set_difference(X1,X2),X3),X1) ),
    inference(spm,[status(thm)],[c_0_72,c_0_73]) ).

cnf(c_0_84,lemma,
    set_difference(set_union2(X1,X2),set_difference(X2,X1)) = set_difference(X1,set_difference(X2,X1)),
    inference(spm,[status(thm)],[c_0_33,c_0_50]) ).

cnf(c_0_85,lemma,
    set_difference(X1,set_difference(X2,X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_74,c_0_75]),c_0_76]),c_0_52]) ).

cnf(c_0_86,lemma,
    set_difference(X1,set_difference(X1,set_difference(X1,X2))) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_42]),c_0_61]) ).

cnf(c_0_87,negated_conjecture,
    set_difference(esk1_0,set_difference(esk1_0,esk2_0)) = esk1_0,
    inference(spm,[status(thm)],[c_0_77,c_0_78]) ).

cnf(c_0_88,lemma,
    ( X1 = esk12_0
    | ~ subset(X1,esk12_0) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_79,c_0_36]),c_0_36]) ).

cnf(c_0_89,negated_conjecture,
    subset(set_difference(esk2_0,set_difference(esk2_0,esk3_0)),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_80,c_0_81]),c_0_61]) ).

cnf(c_0_90,lemma,
    disjoint(set_difference(X1,X2),set_difference(X3,X1)),
    inference(spm,[status(thm)],[c_0_82,c_0_83]) ).

cnf(c_0_91,lemma,
    set_difference(set_union2(X1,X2),set_difference(X2,X1)) = X1,
    inference(rw,[status(thm)],[c_0_84,c_0_85]) ).

cnf(c_0_92,negated_conjecture,
    set_difference(esk1_0,esk2_0) = esk12_0,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_86,c_0_87]),c_0_76]) ).

cnf(c_0_93,lemma,
    set_difference(esk2_0,set_difference(esk2_0,esk3_0)) = esk12_0,
    inference(spm,[status(thm)],[c_0_88,c_0_89]) ).

cnf(c_0_94,plain,
    set_difference(X1,esk12_0) = X1,
    inference(rw,[status(thm)],[c_0_30,c_0_36]) ).

cnf(c_0_95,lemma,
    disjoint(X1,set_difference(X2,set_union2(X1,X3))),
    inference(spm,[status(thm)],[c_0_90,c_0_91]) ).

cnf(c_0_96,lemma,
    set_union2(esk1_0,esk2_0) = esk2_0,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_92]),c_0_52]),c_0_53]) ).

cnf(c_0_97,lemma,
    set_difference(esk2_0,esk3_0) = esk2_0,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_86,c_0_93]),c_0_94]) ).

cnf(c_0_98,lemma,
    disjoint(esk1_0,set_difference(X1,esk2_0)),
    inference(spm,[status(thm)],[c_0_95,c_0_96]) ).

cnf(c_0_99,lemma,
    set_difference(esk3_0,esk2_0) = esk3_0,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_74,c_0_97]),c_0_76]),c_0_52]) ).

cnf(c_0_100,negated_conjecture,
    ~ disjoint(esk1_0,esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_101,lemma,
    $false,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_99]),c_0_100]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SEU140+2 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.13  % Command  : run_ET %s %d
% 0.13/0.35  % Computer : n024.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 600
% 0.13/0.35  % DateTime : Mon Jun 20 09:51:02 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.24/1.43  # Running protocol protocol_eprover_4a02c828a8cc55752123edbcc1ad40e453c11447 for 23 seconds:
% 0.24/1.43  # SinE strategy is GSinE(CountFormulas,hypos,1.4,,04,100,1.0)
% 0.24/1.43  # Preprocessing time       : 0.020 s
% 0.24/1.43  
% 0.24/1.43  # Proof found!
% 0.24/1.43  # SZS status Theorem
% 0.24/1.43  # SZS output start CNFRefutation
% See solution above
% 0.24/1.43  # Proof object total steps             : 102
% 0.24/1.43  # Proof object clause steps            : 61
% 0.24/1.43  # Proof object formula steps           : 41
% 0.24/1.43  # Proof object conjectures             : 10
% 0.24/1.43  # Proof object clause conjectures      : 7
% 0.24/1.43  # Proof object formula conjectures     : 3
% 0.24/1.43  # Proof object initial clauses used    : 24
% 0.24/1.43  # Proof object initial formulas used   : 20
% 0.24/1.43  # Proof object generating inferences   : 27
% 0.24/1.43  # Proof object simplifying inferences  : 29
% 0.24/1.43  # Training examples: 0 positive, 0 negative
% 0.24/1.43  # Parsed axioms                        : 56
% 0.24/1.43  # Removed by relevancy pruning/SinE    : 8
% 0.24/1.43  # Initial clauses                      : 77
% 0.24/1.43  # Removed in clause preprocessing      : 1
% 0.24/1.43  # Initial clauses in saturation        : 76
% 0.24/1.43  # Processed clauses                    : 3399
% 0.24/1.43  # ...of these trivial                  : 175
% 0.24/1.43  # ...subsumed                          : 2482
% 0.24/1.43  # ...remaining for further processing  : 742
% 0.24/1.43  # Other redundant clauses eliminated   : 195
% 0.24/1.43  # Clauses deleted for lack of memory   : 0
% 0.24/1.43  # Backward-subsumed                    : 52
% 0.24/1.43  # Backward-rewritten                   : 43
% 0.24/1.43  # Generated clauses                    : 22671
% 0.24/1.43  # ...of the previous two non-trivial   : 17358
% 0.24/1.43  # Contextual simplify-reflections      : 703
% 0.24/1.43  # Paramodulations                      : 22396
% 0.24/1.43  # Factorizations                       : 60
% 0.24/1.43  # Equation resolutions                 : 215
% 0.24/1.43  # Current number of processed clauses  : 645
% 0.24/1.43  #    Positive orientable unit clauses  : 97
% 0.24/1.43  #    Positive unorientable unit clauses: 2
% 0.24/1.43  #    Negative unit clauses             : 72
% 0.24/1.43  #    Non-unit-clauses                  : 474
% 0.24/1.43  # Current number of unprocessed clauses: 12151
% 0.24/1.43  # ...number of literals in the above   : 36028
% 0.24/1.43  # Current number of archived formulas  : 0
% 0.24/1.43  # Current number of archived clauses   : 96
% 0.24/1.43  # Clause-clause subsumption calls (NU) : 91073
% 0.24/1.43  # Rec. Clause-clause subsumption calls : 77412
% 0.24/1.43  # Non-unit clause-clause subsumptions  : 1942
% 0.24/1.43  # Unit Clause-clause subsumption calls : 4785
% 0.24/1.43  # Rewrite failures with RHS unbound    : 0
% 0.24/1.43  # BW rewrite match attempts            : 122
% 0.24/1.43  # BW rewrite match successes           : 34
% 0.24/1.43  # Condensation attempts                : 0
% 0.24/1.43  # Condensation successes               : 0
% 0.24/1.43  # Termbank termtop insertions          : 218092
% 0.24/1.43  
% 0.24/1.43  # -------------------------------------------------
% 0.24/1.43  # User time                : 0.312 s
% 0.24/1.43  # System time              : 0.010 s
% 0.24/1.43  # Total time               : 0.322 s
% 0.24/1.43  # Maximum resident set size: 14192 pages
%------------------------------------------------------------------------------