TSTP Solution File: SEU140+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SEU140+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Jul 19 07:10:51 EDT 2022

% Result   : Theorem 0.43s 1.11s
% Output   : Refutation 0.43s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SEU140+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n026.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Sun Jun 19 05:14:10 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.43/1.11  *** allocated 10000 integers for termspace/termends
% 0.43/1.11  *** allocated 10000 integers for clauses
% 0.43/1.11  *** allocated 10000 integers for justifications
% 0.43/1.11  Bliksem 1.12
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  Automatic Strategy Selection
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  Clauses:
% 0.43/1.11  
% 0.43/1.11  { ! in( X, Y ), ! in( Y, X ) }.
% 0.43/1.11  { set_intersection2( X, Y ) = set_intersection2( Y, X ) }.
% 0.43/1.11  { ! disjoint( X, Y ), set_intersection2( X, Y ) = empty_set }.
% 0.43/1.11  { ! set_intersection2( X, Y ) = empty_set, disjoint( X, Y ) }.
% 0.43/1.11  { && }.
% 0.43/1.11  { && }.
% 0.43/1.11  { empty( empty_set ) }.
% 0.43/1.11  { set_intersection2( X, X ) = X }.
% 0.43/1.11  { empty( skol1 ) }.
% 0.43/1.11  { ! empty( skol2 ) }.
% 0.43/1.11  { subset( X, X ) }.
% 0.43/1.11  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.43/1.11  { ! subset( X, Y ), subset( set_intersection2( X, Z ), set_intersection2( Y
% 0.43/1.11    , Z ) ) }.
% 0.43/1.11  { set_intersection2( X, empty_set ) = empty_set }.
% 0.43/1.11  { ! subset( X, empty_set ), X = empty_set }.
% 0.43/1.11  { subset( skol3, skol5 ) }.
% 0.43/1.11  { disjoint( skol5, skol4 ) }.
% 0.43/1.11  { ! disjoint( skol3, skol4 ) }.
% 0.43/1.11  { ! empty( X ), X = empty_set }.
% 0.43/1.11  { ! in( X, Y ), ! empty( Y ) }.
% 0.43/1.11  { ! empty( X ), X = Y, ! empty( Y ) }.
% 0.43/1.11  
% 0.43/1.11  percentage equality = 0.266667, percentage horn = 1.000000
% 0.43/1.11  This is a problem with some equality
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  Options Used:
% 0.43/1.11  
% 0.43/1.11  useres =            1
% 0.43/1.11  useparamod =        1
% 0.43/1.11  useeqrefl =         1
% 0.43/1.11  useeqfact =         1
% 0.43/1.11  usefactor =         1
% 0.43/1.11  usesimpsplitting =  0
% 0.43/1.11  usesimpdemod =      5
% 0.43/1.11  usesimpres =        3
% 0.43/1.11  
% 0.43/1.11  resimpinuse      =  1000
% 0.43/1.11  resimpclauses =     20000
% 0.43/1.11  substype =          eqrewr
% 0.43/1.11  backwardsubs =      1
% 0.43/1.11  selectoldest =      5
% 0.43/1.11  
% 0.43/1.11  litorderings [0] =  split
% 0.43/1.11  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.43/1.11  
% 0.43/1.11  termordering =      kbo
% 0.43/1.11  
% 0.43/1.11  litapriori =        0
% 0.43/1.11  termapriori =       1
% 0.43/1.11  litaposteriori =    0
% 0.43/1.11  termaposteriori =   0
% 0.43/1.11  demodaposteriori =  0
% 0.43/1.11  ordereqreflfact =   0
% 0.43/1.11  
% 0.43/1.11  litselect =         negord
% 0.43/1.11  
% 0.43/1.11  maxweight =         15
% 0.43/1.11  maxdepth =          30000
% 0.43/1.11  maxlength =         115
% 0.43/1.11  maxnrvars =         195
% 0.43/1.11  excuselevel =       1
% 0.43/1.11  increasemaxweight = 1
% 0.43/1.11  
% 0.43/1.11  maxselected =       10000000
% 0.43/1.11  maxnrclauses =      10000000
% 0.43/1.11  
% 0.43/1.11  showgenerated =    0
% 0.43/1.11  showkept =         0
% 0.43/1.11  showselected =     0
% 0.43/1.11  showdeleted =      0
% 0.43/1.11  showresimp =       1
% 0.43/1.11  showstatus =       2000
% 0.43/1.11  
% 0.43/1.11  prologoutput =     0
% 0.43/1.11  nrgoals =          5000000
% 0.43/1.11  totalproof =       1
% 0.43/1.11  
% 0.43/1.11  Symbols occurring in the translation:
% 0.43/1.11  
% 0.43/1.11  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.43/1.11  .  [1, 2]      (w:1, o:21, a:1, s:1, b:0), 
% 0.43/1.11  &&  [3, 0]      (w:1, o:4, a:1, s:1, b:0), 
% 0.43/1.11  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.43/1.11  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.43/1.11  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.43/1.11  in  [37, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.43/1.11  set_intersection2  [38, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.43/1.11  disjoint  [39, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.43/1.11  empty_set  [40, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.43/1.11  empty  [41, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.43/1.11  subset  [42, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.43/1.11  skol1  [44, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.43/1.11  skol2  [45, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.43/1.11  skol3  [46, 0]      (w:1, o:12, a:1, s:1, b:1), 
% 0.43/1.11  skol4  [47, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.43/1.11  skol5  [48, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  Starting Search:
% 0.43/1.11  
% 0.43/1.11  *** allocated 15000 integers for clauses
% 0.43/1.11  *** allocated 22500 integers for clauses
% 0.43/1.11  
% 0.43/1.11  Bliksems!, er is een bewijs:
% 0.43/1.11  % SZS status Theorem
% 0.43/1.11  % SZS output start Refutation
% 0.43/1.11  
% 0.43/1.11  (1) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = set_intersection2( 
% 0.43/1.11    Y, X ) }.
% 0.43/1.11  (2) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), set_intersection2( X, Y ) 
% 0.43/1.11    ==> empty_set }.
% 0.43/1.11  (3) {G0,W8,D3,L2,V2,M2} I { ! set_intersection2( X, Y ) ==> empty_set, 
% 0.43/1.11    disjoint( X, Y ) }.
% 0.43/1.11  (5) {G0,W2,D2,L1,V0,M1} I { empty( empty_set ) }.
% 0.43/1.11  (10) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.43/1.11  (11) {G0,W10,D3,L2,V3,M2} I { ! subset( X, Y ), subset( set_intersection2( 
% 0.43/1.11    X, Z ), set_intersection2( Y, Z ) ) }.
% 0.43/1.11  (13) {G0,W6,D2,L2,V1,M2} I { ! subset( X, empty_set ), X = empty_set }.
% 0.43/1.11  (14) {G0,W3,D2,L1,V0,M1} I { subset( skol3, skol5 ) }.
% 0.43/1.11  (15) {G0,W3,D2,L1,V0,M1} I { disjoint( skol5, skol4 ) }.
% 0.43/1.11  (16) {G0,W3,D2,L1,V0,M1} I { ! disjoint( skol3, skol4 ) }.
% 0.43/1.11  (17) {G0,W5,D2,L2,V1,M2} I { ! empty( X ), X = empty_set }.
% 0.43/1.11  (24) {G1,W9,D3,L2,V2,M2} P(17,1) { set_intersection2( Y, X ) ==> empty_set
% 0.43/1.11    , ! empty( set_intersection2( X, Y ) ) }.
% 0.43/1.11  (31) {G1,W5,D3,L1,V0,M1} R(2,15) { set_intersection2( skol5, skol4 ) ==> 
% 0.43/1.11    empty_set }.
% 0.43/1.11  (56) {G1,W3,D2,L1,V0,M1} R(10,16) { ! disjoint( skol4, skol3 ) }.
% 0.43/1.11  (63) {G1,W7,D3,L1,V1,M1} R(11,14) { subset( set_intersection2( skol3, X ), 
% 0.43/1.11    set_intersection2( skol5, X ) ) }.
% 0.43/1.11  (72) {G2,W5,D3,L1,V0,M1} R(56,3) { ! set_intersection2( skol4, skol3 ) ==> 
% 0.43/1.11    empty_set }.
% 0.43/1.11  (95) {G1,W5,D2,L2,V1,M2} P(13,5) { empty( X ), ! subset( X, empty_set ) }.
% 0.43/1.11  (115) {G3,W4,D3,L1,V0,M1} R(72,24) { ! empty( set_intersection2( skol3, 
% 0.43/1.11    skol4 ) ) }.
% 0.43/1.11  (119) {G4,W5,D3,L1,V0,M1} R(115,95) { ! subset( set_intersection2( skol3, 
% 0.43/1.11    skol4 ), empty_set ) }.
% 0.43/1.11  (358) {G5,W0,D0,L0,V0,M0} P(31,63);r(119) {  }.
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  % SZS output end Refutation
% 0.43/1.11  found a proof!
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  Unprocessed initial clauses:
% 0.43/1.11  
% 0.43/1.11  (360) {G0,W6,D2,L2,V2,M2}  { ! in( X, Y ), ! in( Y, X ) }.
% 0.43/1.11  (361) {G0,W7,D3,L1,V2,M1}  { set_intersection2( X, Y ) = set_intersection2
% 0.43/1.11    ( Y, X ) }.
% 0.43/1.11  (362) {G0,W8,D3,L2,V2,M2}  { ! disjoint( X, Y ), set_intersection2( X, Y ) 
% 0.43/1.11    = empty_set }.
% 0.43/1.11  (363) {G0,W8,D3,L2,V2,M2}  { ! set_intersection2( X, Y ) = empty_set, 
% 0.43/1.11    disjoint( X, Y ) }.
% 0.43/1.11  (364) {G0,W1,D1,L1,V0,M1}  { && }.
% 0.43/1.11  (365) {G0,W1,D1,L1,V0,M1}  { && }.
% 0.43/1.11  (366) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.43/1.11  (367) {G0,W5,D3,L1,V1,M1}  { set_intersection2( X, X ) = X }.
% 0.43/1.11  (368) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.43/1.11  (369) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.43/1.11  (370) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.43/1.11  (371) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.43/1.11  (372) {G0,W10,D3,L2,V3,M2}  { ! subset( X, Y ), subset( set_intersection2( 
% 0.43/1.11    X, Z ), set_intersection2( Y, Z ) ) }.
% 0.43/1.11  (373) {G0,W5,D3,L1,V1,M1}  { set_intersection2( X, empty_set ) = empty_set
% 0.43/1.11     }.
% 0.43/1.11  (374) {G0,W6,D2,L2,V1,M2}  { ! subset( X, empty_set ), X = empty_set }.
% 0.43/1.11  (375) {G0,W3,D2,L1,V0,M1}  { subset( skol3, skol5 ) }.
% 0.43/1.11  (376) {G0,W3,D2,L1,V0,M1}  { disjoint( skol5, skol4 ) }.
% 0.43/1.11  (377) {G0,W3,D2,L1,V0,M1}  { ! disjoint( skol3, skol4 ) }.
% 0.43/1.11  (378) {G0,W5,D2,L2,V1,M2}  { ! empty( X ), X = empty_set }.
% 0.43/1.11  (379) {G0,W5,D2,L2,V2,M2}  { ! in( X, Y ), ! empty( Y ) }.
% 0.43/1.11  (380) {G0,W7,D2,L3,V2,M3}  { ! empty( X ), X = Y, ! empty( Y ) }.
% 0.43/1.11  
% 0.43/1.11  
% 0.43/1.11  Total Proof:
% 0.43/1.11  
% 0.43/1.11  subsumption: (1) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = 
% 0.43/1.11    set_intersection2( Y, X ) }.
% 0.43/1.11  parent0: (361) {G0,W7,D3,L1,V2,M1}  { set_intersection2( X, Y ) = 
% 0.43/1.11    set_intersection2( Y, X ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (2) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), 
% 0.43/1.11    set_intersection2( X, Y ) ==> empty_set }.
% 0.43/1.11  parent0: (362) {G0,W8,D3,L2,V2,M2}  { ! disjoint( X, Y ), set_intersection2
% 0.43/1.11    ( X, Y ) = empty_set }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (3) {G0,W8,D3,L2,V2,M2} I { ! set_intersection2( X, Y ) ==> 
% 0.43/1.11    empty_set, disjoint( X, Y ) }.
% 0.43/1.11  parent0: (363) {G0,W8,D3,L2,V2,M2}  { ! set_intersection2( X, Y ) = 
% 0.43/1.11    empty_set, disjoint( X, Y ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (5) {G0,W2,D2,L1,V0,M1} I { empty( empty_set ) }.
% 0.43/1.11  parent0: (366) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (10) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, 
% 0.43/1.11    X ) }.
% 0.43/1.11  parent0: (371) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X )
% 0.43/1.11     }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (11) {G0,W10,D3,L2,V3,M2} I { ! subset( X, Y ), subset( 
% 0.43/1.11    set_intersection2( X, Z ), set_intersection2( Y, Z ) ) }.
% 0.43/1.11  parent0: (372) {G0,W10,D3,L2,V3,M2}  { ! subset( X, Y ), subset( 
% 0.43/1.11    set_intersection2( X, Z ), set_intersection2( Y, Z ) ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11     Z := Z
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (13) {G0,W6,D2,L2,V1,M2} I { ! subset( X, empty_set ), X = 
% 0.43/1.11    empty_set }.
% 0.43/1.11  parent0: (374) {G0,W6,D2,L2,V1,M2}  { ! subset( X, empty_set ), X = 
% 0.43/1.11    empty_set }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (14) {G0,W3,D2,L1,V0,M1} I { subset( skol3, skol5 ) }.
% 0.43/1.11  parent0: (375) {G0,W3,D2,L1,V0,M1}  { subset( skol3, skol5 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (15) {G0,W3,D2,L1,V0,M1} I { disjoint( skol5, skol4 ) }.
% 0.43/1.11  parent0: (376) {G0,W3,D2,L1,V0,M1}  { disjoint( skol5, skol4 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (16) {G0,W3,D2,L1,V0,M1} I { ! disjoint( skol3, skol4 ) }.
% 0.43/1.11  parent0: (377) {G0,W3,D2,L1,V0,M1}  { ! disjoint( skol3, skol4 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (17) {G0,W5,D2,L2,V1,M2} I { ! empty( X ), X = empty_set }.
% 0.43/1.11  parent0: (378) {G0,W5,D2,L2,V1,M2}  { ! empty( X ), X = empty_set }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  paramod: (431) {G1,W9,D3,L2,V2,M2}  { set_intersection2( X, Y ) = empty_set
% 0.43/1.11    , ! empty( set_intersection2( Y, X ) ) }.
% 0.43/1.11  parent0[1]: (17) {G0,W5,D2,L2,V1,M2} I { ! empty( X ), X = empty_set }.
% 0.43/1.11  parent1[0; 4]: (1) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = 
% 0.43/1.11    set_intersection2( Y, X ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := set_intersection2( Y, X )
% 0.43/1.11  end
% 0.43/1.11  substitution1:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (24) {G1,W9,D3,L2,V2,M2} P(17,1) { set_intersection2( Y, X ) 
% 0.43/1.11    ==> empty_set, ! empty( set_intersection2( X, Y ) ) }.
% 0.43/1.11  parent0: (431) {G1,W9,D3,L2,V2,M2}  { set_intersection2( X, Y ) = empty_set
% 0.43/1.11    , ! empty( set_intersection2( Y, X ) ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := Y
% 0.43/1.11     Y := X
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11     1 ==> 1
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  eqswap: (472) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_intersection2( X, Y
% 0.43/1.11     ), ! disjoint( X, Y ) }.
% 0.43/1.11  parent0[1]: (2) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), 
% 0.43/1.11    set_intersection2( X, Y ) ==> empty_set }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  resolution: (473) {G1,W5,D3,L1,V0,M1}  { empty_set ==> set_intersection2( 
% 0.43/1.11    skol5, skol4 ) }.
% 0.43/1.11  parent0[1]: (472) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_intersection2( X
% 0.43/1.11    , Y ), ! disjoint( X, Y ) }.
% 0.43/1.11  parent1[0]: (15) {G0,W3,D2,L1,V0,M1} I { disjoint( skol5, skol4 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := skol5
% 0.43/1.11     Y := skol4
% 0.43/1.11  end
% 0.43/1.11  substitution1:
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  eqswap: (474) {G1,W5,D3,L1,V0,M1}  { set_intersection2( skol5, skol4 ) ==> 
% 0.43/1.11    empty_set }.
% 0.43/1.11  parent0[0]: (473) {G1,W5,D3,L1,V0,M1}  { empty_set ==> set_intersection2( 
% 0.43/1.11    skol5, skol4 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (31) {G1,W5,D3,L1,V0,M1} R(2,15) { set_intersection2( skol5, 
% 0.43/1.11    skol4 ) ==> empty_set }.
% 0.43/1.11  parent0: (474) {G1,W5,D3,L1,V0,M1}  { set_intersection2( skol5, skol4 ) ==>
% 0.43/1.11     empty_set }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  resolution: (475) {G1,W3,D2,L1,V0,M1}  { ! disjoint( skol4, skol3 ) }.
% 0.43/1.11  parent0[0]: (16) {G0,W3,D2,L1,V0,M1} I { ! disjoint( skol3, skol4 ) }.
% 0.43/1.11  parent1[1]: (10) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.43/1.11     ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  substitution1:
% 0.43/1.11     X := skol4
% 0.43/1.11     Y := skol3
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (56) {G1,W3,D2,L1,V0,M1} R(10,16) { ! disjoint( skol4, skol3 )
% 0.43/1.11     }.
% 0.43/1.11  parent0: (475) {G1,W3,D2,L1,V0,M1}  { ! disjoint( skol4, skol3 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  resolution: (476) {G1,W7,D3,L1,V1,M1}  { subset( set_intersection2( skol3, 
% 0.43/1.11    X ), set_intersection2( skol5, X ) ) }.
% 0.43/1.11  parent0[0]: (11) {G0,W10,D3,L2,V3,M2} I { ! subset( X, Y ), subset( 
% 0.43/1.11    set_intersection2( X, Z ), set_intersection2( Y, Z ) ) }.
% 0.43/1.11  parent1[0]: (14) {G0,W3,D2,L1,V0,M1} I { subset( skol3, skol5 ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := skol3
% 0.43/1.11     Y := skol5
% 0.43/1.11     Z := X
% 0.43/1.11  end
% 0.43/1.11  substitution1:
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  subsumption: (63) {G1,W7,D3,L1,V1,M1} R(11,14) { subset( set_intersection2
% 0.43/1.11    ( skol3, X ), set_intersection2( skol5, X ) ) }.
% 0.43/1.11  parent0: (476) {G1,W7,D3,L1,V1,M1}  { subset( set_intersection2( skol3, X )
% 0.43/1.11    , set_intersection2( skol5, X ) ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11  end
% 0.43/1.11  permutation0:
% 0.43/1.11     0 ==> 0
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  eqswap: (477) {G0,W8,D3,L2,V2,M2}  { ! empty_set ==> set_intersection2( X, 
% 0.43/1.11    Y ), disjoint( X, Y ) }.
% 0.43/1.11  parent0[0]: (3) {G0,W8,D3,L2,V2,M2} I { ! set_intersection2( X, Y ) ==> 
% 0.43/1.11    empty_set, disjoint( X, Y ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11     X := X
% 0.43/1.11     Y := Y
% 0.43/1.11  end
% 0.43/1.11  
% 0.43/1.11  resolution: (478) {G1,W5,D3,L1,V0,M1}  { ! empty_set ==> set_intersection2
% 0.43/1.11    ( skol4, skol3 ) }.
% 0.43/1.11  parent0[0]: (56) {G1,W3,D2,L1,V0,M1} R(10,16) { ! disjoint( skol4, skol3 )
% 0.43/1.11     }.
% 0.43/1.11  parent1[1]: (477) {G0,W8,D3,L2,V2,M2}  { ! empty_set ==> set_intersection2
% 0.43/1.11    ( X, Y ), disjoint( X, Y ) }.
% 0.43/1.11  substitution0:
% 0.43/1.11  end
% 0.43/1.11  substitution1:
% 2.13/2.50     X := skol4
% 2.13/2.50     Y := skol3
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  eqswap: (479) {G1,W5,D3,L1,V0,M1}  { ! set_intersection2( skol4, skol3 ) 
% 2.13/2.50    ==> empty_set }.
% 2.13/2.50  parent0[0]: (478) {G1,W5,D3,L1,V0,M1}  { ! empty_set ==> set_intersection2
% 2.13/2.50    ( skol4, skol3 ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  subsumption: (72) {G2,W5,D3,L1,V0,M1} R(56,3) { ! set_intersection2( skol4
% 2.13/2.50    , skol3 ) ==> empty_set }.
% 2.13/2.50  parent0: (479) {G1,W5,D3,L1,V0,M1}  { ! set_intersection2( skol4, skol3 ) 
% 2.13/2.50    ==> empty_set }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  permutation0:
% 2.13/2.50     0 ==> 0
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  *** allocated 33750 integers for clauses
% 2.13/2.50  *** allocated 15000 integers for termspace/termends
% 2.13/2.50  *** allocated 15000 integers for justifications
% 2.13/2.50  *** allocated 22500 integers for termspace/termends
% 2.13/2.50  *** allocated 22500 integers for justifications
% 2.13/2.50  eqswap: (480) {G0,W6,D2,L2,V1,M2}  { empty_set = X, ! subset( X, empty_set
% 2.13/2.50     ) }.
% 2.13/2.50  parent0[1]: (13) {G0,W6,D2,L2,V1,M2} I { ! subset( X, empty_set ), X = 
% 2.13/2.50    empty_set }.
% 2.13/2.50  substitution0:
% 2.13/2.50     X := X
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  paramod: (481) {G1,W5,D2,L2,V1,M2}  { empty( X ), ! subset( X, empty_set )
% 2.13/2.50     }.
% 2.13/2.50  parent0[0]: (480) {G0,W6,D2,L2,V1,M2}  { empty_set = X, ! subset( X, 
% 2.13/2.50    empty_set ) }.
% 2.13/2.50  parent1[0; 1]: (5) {G0,W2,D2,L1,V0,M1} I { empty( empty_set ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50     X := X
% 2.13/2.50  end
% 2.13/2.50  substitution1:
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  subsumption: (95) {G1,W5,D2,L2,V1,M2} P(13,5) { empty( X ), ! subset( X, 
% 2.13/2.50    empty_set ) }.
% 2.13/2.50  parent0: (481) {G1,W5,D2,L2,V1,M2}  { empty( X ), ! subset( X, empty_set )
% 2.13/2.50     }.
% 2.13/2.50  substitution0:
% 2.13/2.50     X := X
% 2.13/2.50  end
% 2.13/2.50  permutation0:
% 2.13/2.50     0 ==> 0
% 2.13/2.50     1 ==> 1
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  eqswap: (935) {G2,W5,D3,L1,V0,M1}  { ! empty_set ==> set_intersection2( 
% 2.13/2.50    skol4, skol3 ) }.
% 2.13/2.50  parent0[0]: (72) {G2,W5,D3,L1,V0,M1} R(56,3) { ! set_intersection2( skol4, 
% 2.13/2.50    skol3 ) ==> empty_set }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  eqswap: (936) {G1,W9,D3,L2,V2,M2}  { empty_set ==> set_intersection2( X, Y
% 2.13/2.50     ), ! empty( set_intersection2( Y, X ) ) }.
% 2.13/2.50  parent0[0]: (24) {G1,W9,D3,L2,V2,M2} P(17,1) { set_intersection2( Y, X ) 
% 2.13/2.50    ==> empty_set, ! empty( set_intersection2( X, Y ) ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50     X := Y
% 2.13/2.50     Y := X
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  resolution: (937) {G2,W4,D3,L1,V0,M1}  { ! empty( set_intersection2( skol3
% 2.13/2.50    , skol4 ) ) }.
% 2.13/2.50  parent0[0]: (935) {G2,W5,D3,L1,V0,M1}  { ! empty_set ==> set_intersection2
% 2.13/2.50    ( skol4, skol3 ) }.
% 2.13/2.50  parent1[0]: (936) {G1,W9,D3,L2,V2,M2}  { empty_set ==> set_intersection2( X
% 2.13/2.50    , Y ), ! empty( set_intersection2( Y, X ) ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  substitution1:
% 2.13/2.50     X := skol4
% 2.13/2.50     Y := skol3
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  subsumption: (115) {G3,W4,D3,L1,V0,M1} R(72,24) { ! empty( 
% 2.13/2.50    set_intersection2( skol3, skol4 ) ) }.
% 2.13/2.50  parent0: (937) {G2,W4,D3,L1,V0,M1}  { ! empty( set_intersection2( skol3, 
% 2.13/2.50    skol4 ) ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  permutation0:
% 2.13/2.50     0 ==> 0
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  resolution: (938) {G2,W5,D3,L1,V0,M1}  { ! subset( set_intersection2( skol3
% 2.13/2.50    , skol4 ), empty_set ) }.
% 2.13/2.50  parent0[0]: (115) {G3,W4,D3,L1,V0,M1} R(72,24) { ! empty( set_intersection2
% 2.13/2.50    ( skol3, skol4 ) ) }.
% 2.13/2.50  parent1[0]: (95) {G1,W5,D2,L2,V1,M2} P(13,5) { empty( X ), ! subset( X, 
% 2.13/2.50    empty_set ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  substitution1:
% 2.13/2.50     X := set_intersection2( skol3, skol4 )
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  subsumption: (119) {G4,W5,D3,L1,V0,M1} R(115,95) { ! subset( 
% 2.13/2.50    set_intersection2( skol3, skol4 ), empty_set ) }.
% 2.13/2.50  parent0: (938) {G2,W5,D3,L1,V0,M1}  { ! subset( set_intersection2( skol3, 
% 2.13/2.50    skol4 ), empty_set ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  permutation0:
% 2.13/2.50     0 ==> 0
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  paramod: (940) {G2,W5,D3,L1,V0,M1}  { subset( set_intersection2( skol3, 
% 2.13/2.50    skol4 ), empty_set ) }.
% 2.13/2.50  parent0[0]: (31) {G1,W5,D3,L1,V0,M1} R(2,15) { set_intersection2( skol5, 
% 2.13/2.50    skol4 ) ==> empty_set }.
% 2.13/2.50  parent1[0; 4]: (63) {G1,W7,D3,L1,V1,M1} R(11,14) { subset( 
% 2.13/2.50    set_intersection2( skol3, X ), set_intersection2( skol5, X ) ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  substitution1:
% 2.13/2.50     X := skol4
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  resolution: (941) {G3,W0,D0,L0,V0,M0}  {  }.
% 2.13/2.50  parent0[0]: (119) {G4,W5,D3,L1,V0,M1} R(115,95) { ! subset( 
% 2.13/2.50    set_intersection2( skol3, skol4 ), empty_set ) }.
% 2.13/2.50  parent1[0]: (940) {G2,W5,D3,L1,V0,M1}  { subset( set_intersection2( skol3, 
% 2.13/2.50    skol4 ), empty_set ) }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  substitution1:
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  subsumption: (358) {G5,W0,D0,L0,V0,M0} P(31,63);r(119) {  }.
% 2.13/2.50  parent0: (941) {G3,W0,D0,L0,V0,M0}  {  }.
% 2.13/2.50  substitution0:
% 2.13/2.50  end
% 2.13/2.50  permutation0:
% 2.13/2.50  end
% 2.13/2.50  
% 2.13/2.50  Proof check complete!
% 2.13/2.50  
% 2.13/2.50  Memory use:
% 2.13/2.50  
% 2.13/2.50  space for terms:        3862
% 2.13/2.51  space for clauses:      16451
% 2.13/2.51  
% 2.13/2.51  
% 2.13/2.51  clauses generated:      2666
% 2.13/2.51  clauses kept:           359
% 2.13/2.51  clauses selected:       119
% 2.13/2.51  clauses deleted:        13
% 2.13/2.51  clauses inuse deleted:  0
% 2.13/2.51  
% 2.13/2.51  subsentry:          324293
% 2.13/2.51  literals s-matched: 267347
% 2.13/2.51  literals matched:   267242
% 2.13/2.51  full subsumption:   263838
% 2.13/2.51  
% 2.13/2.51  checksum:           1463609403
% 2.13/2.51  
% 2.13/2.51  
% 2.13/2.51  Bliksem ended
%------------------------------------------------------------------------------