TSTP Solution File: SEU138+2 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : SEU138+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 19:24:53 EDT 2023

% Result   : Theorem 630.77s 80.32s
% Output   : CNFRefutation 630.77s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   20
%            Number of leaves      :   21
% Syntax   : Number of formulae    :  149 (  82 unt;   0 def)
%            Number of atoms       :  312 ( 110 equ)
%            Maximal formula atoms :   20 (   2 avg)
%            Number of connectives :  263 ( 100   ~; 120   |;  26   &)
%                                         (  13 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   3 con; 0-3 aty)
%            Number of variables   :  379 (  45 sgn; 116   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(d4_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',d4_xboole_0) ).

fof(d3_tarski,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',d3_tarski) ).

fof(d2_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_union2(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            | in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',d2_xboole_0) ).

fof(t1_xboole_1,lemma,
    ! [X1,X2,X3] :
      ( ( subset(X1,X2)
        & subset(X2,X3) )
     => subset(X1,X3) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t1_xboole_1) ).

fof(t17_xboole_1,lemma,
    ! [X1,X2] : subset(set_intersection2(X1,X2),X1),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t17_xboole_1) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',commutativity_k3_xboole_0) ).

fof(l32_xboole_1,lemma,
    ! [X1,X2] :
      ( set_difference(X1,X2) = empty_set
    <=> subset(X1,X2) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',l32_xboole_1) ).

fof(t36_xboole_1,lemma,
    ! [X1,X2] : subset(set_difference(X1,X2),X1),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t36_xboole_1) ).

fof(d3_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_intersection2(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',d3_xboole_0) ).

fof(t28_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_intersection2(X1,X2) = X1 ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t28_xboole_1) ).

fof(t39_xboole_1,lemma,
    ! [X1,X2] : set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t39_xboole_1) ).

fof(t1_boole,axiom,
    ! [X1] : set_union2(X1,empty_set) = X1,
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t1_boole) ).

fof(t40_xboole_1,lemma,
    ! [X1,X2] : set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t40_xboole_1) ).

fof(t7_xboole_1,lemma,
    ! [X1,X2] : subset(X1,set_union2(X1,X2)),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t7_xboole_1) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [X1,X2] : set_union2(X1,X2) = set_union2(X2,X1),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',commutativity_k2_xboole_0) ).

fof(d1_xboole_0,axiom,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',d1_xboole_0) ).

fof(t12_xboole_1,lemma,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_union2(X1,X2) = X2 ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t12_xboole_1) ).

fof(d10_xboole_0,axiom,
    ! [X1,X2] :
      ( X1 = X2
    <=> ( subset(X1,X2)
        & subset(X2,X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',d10_xboole_0) ).

fof(t3_boole,axiom,
    ! [X1] : set_difference(X1,empty_set) = X1,
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t3_boole) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [X1,X2] : set_union2(X1,X1) = X1,
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',idempotence_k2_xboole_0) ).

fof(t48_xboole_1,conjecture,
    ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    file('/export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p',t48_xboole_1) ).

fof(c_0_21,plain,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    inference(fof_simplification,[status(thm)],[d4_xboole_0]) ).

fof(c_0_22,plain,
    ! [X30,X31,X32,X33,X34,X35,X36,X37] :
      ( ( in(X33,X30)
        | ~ in(X33,X32)
        | X32 != set_difference(X30,X31) )
      & ( ~ in(X33,X31)
        | ~ in(X33,X32)
        | X32 != set_difference(X30,X31) )
      & ( ~ in(X34,X30)
        | in(X34,X31)
        | in(X34,X32)
        | X32 != set_difference(X30,X31) )
      & ( ~ in(esk4_3(X35,X36,X37),X37)
        | ~ in(esk4_3(X35,X36,X37),X35)
        | in(esk4_3(X35,X36,X37),X36)
        | X37 = set_difference(X35,X36) )
      & ( in(esk4_3(X35,X36,X37),X35)
        | in(esk4_3(X35,X36,X37),X37)
        | X37 = set_difference(X35,X36) )
      & ( ~ in(esk4_3(X35,X36,X37),X36)
        | in(esk4_3(X35,X36,X37),X37)
        | X37 = set_difference(X35,X36) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_21])])])])])]) ).

cnf(c_0_23,plain,
    ( ~ in(X1,X2)
    | ~ in(X1,X3)
    | X3 != set_difference(X4,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

fof(c_0_24,plain,
    ! [X71,X72,X73,X74,X75] :
      ( ( ~ subset(X71,X72)
        | ~ in(X73,X71)
        | in(X73,X72) )
      & ( in(esk7_2(X74,X75),X74)
        | subset(X74,X75) )
      & ( ~ in(esk7_2(X74,X75),X75)
        | subset(X74,X75) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_tarski])])])])])]) ).

fof(c_0_25,plain,
    ! [X62,X63,X64,X65,X66,X67,X68,X69] :
      ( ( ~ in(X65,X64)
        | in(X65,X62)
        | in(X65,X63)
        | X64 != set_union2(X62,X63) )
      & ( ~ in(X66,X62)
        | in(X66,X64)
        | X64 != set_union2(X62,X63) )
      & ( ~ in(X66,X63)
        | in(X66,X64)
        | X64 != set_union2(X62,X63) )
      & ( ~ in(esk6_3(X67,X68,X69),X67)
        | ~ in(esk6_3(X67,X68,X69),X69)
        | X69 = set_union2(X67,X68) )
      & ( ~ in(esk6_3(X67,X68,X69),X68)
        | ~ in(esk6_3(X67,X68,X69),X69)
        | X69 = set_union2(X67,X68) )
      & ( in(esk6_3(X67,X68,X69),X69)
        | in(esk6_3(X67,X68,X69),X67)
        | in(esk6_3(X67,X68,X69),X68)
        | X69 = set_union2(X67,X68) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d2_xboole_0])])])])])]) ).

cnf(c_0_26,plain,
    ( in(X1,X3)
    | in(X1,X4)
    | ~ in(X1,X2)
    | X4 != set_difference(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_27,plain,
    ( in(X1,X2)
    | ~ in(X1,X3)
    | X3 != set_difference(X2,X4) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

fof(c_0_28,lemma,
    ! [X87,X88,X89] :
      ( ~ subset(X87,X88)
      | ~ subset(X88,X89)
      | subset(X87,X89) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])]) ).

fof(c_0_29,lemma,
    ! [X19,X20] : subset(set_intersection2(X19,X20),X19),
    inference(variable_rename,[status(thm)],[t17_xboole_1]) ).

fof(c_0_30,plain,
    ! [X7,X8] : set_intersection2(X7,X8) = set_intersection2(X8,X7),
    inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0]) ).

cnf(c_0_31,plain,
    ( ~ in(X1,set_difference(X2,X3))
    | ~ in(X1,X3) ),
    inference(er,[status(thm)],[c_0_23]) ).

cnf(c_0_32,plain,
    ( in(esk7_2(X1,X2),X1)
    | subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_33,plain,
    ( in(X1,X3)
    | ~ in(X1,X2)
    | X3 != set_union2(X4,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_34,plain,
    ( subset(X1,X2)
    | ~ in(esk7_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_35,plain,
    ( in(X1,set_difference(X2,X3))
    | in(X1,X3)
    | ~ in(X1,X2) ),
    inference(er,[status(thm)],[c_0_26]) ).

cnf(c_0_36,plain,
    ( in(X1,X2)
    | ~ in(X1,set_difference(X2,X3)) ),
    inference(er,[status(thm)],[c_0_27]) ).

fof(c_0_37,lemma,
    ! [X39,X40] :
      ( ( set_difference(X39,X40) != empty_set
        | subset(X39,X40) )
      & ( ~ subset(X39,X40)
        | set_difference(X39,X40) = empty_set ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])]) ).

fof(c_0_38,lemma,
    ! [X44,X45] : subset(set_difference(X44,X45),X44),
    inference(variable_rename,[status(thm)],[t36_xboole_1]) ).

fof(c_0_39,plain,
    ! [X9,X10,X11,X12,X13,X14,X15,X16] :
      ( ( in(X12,X9)
        | ~ in(X12,X11)
        | X11 != set_intersection2(X9,X10) )
      & ( in(X12,X10)
        | ~ in(X12,X11)
        | X11 != set_intersection2(X9,X10) )
      & ( ~ in(X13,X9)
        | ~ in(X13,X10)
        | in(X13,X11)
        | X11 != set_intersection2(X9,X10) )
      & ( ~ in(esk3_3(X14,X15,X16),X16)
        | ~ in(esk3_3(X14,X15,X16),X14)
        | ~ in(esk3_3(X14,X15,X16),X15)
        | X16 = set_intersection2(X14,X15) )
      & ( in(esk3_3(X14,X15,X16),X14)
        | in(esk3_3(X14,X15,X16),X16)
        | X16 = set_intersection2(X14,X15) )
      & ( in(esk3_3(X14,X15,X16),X15)
        | in(esk3_3(X14,X15,X16),X16)
        | X16 = set_intersection2(X14,X15) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])]) ).

cnf(c_0_40,lemma,
    ( subset(X1,X3)
    | ~ subset(X1,X2)
    | ~ subset(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_41,lemma,
    subset(set_intersection2(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_29]) ).

fof(c_0_42,lemma,
    ! [X27,X28] :
      ( ~ subset(X27,X28)
      | set_intersection2(X27,X28) = X27 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t28_xboole_1])]) ).

cnf(c_0_43,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_44,plain,
    ( subset(set_difference(X1,X2),X3)
    | ~ in(esk7_2(set_difference(X1,X2),X3),X2) ),
    inference(spm,[status(thm)],[c_0_31,c_0_32]) ).

cnf(c_0_45,plain,
    ( in(X1,set_union2(X2,X3))
    | ~ in(X1,X3) ),
    inference(er,[status(thm)],[c_0_33]) ).

cnf(c_0_46,plain,
    ( subset(X1,set_difference(X2,X3))
    | in(esk7_2(X1,set_difference(X2,X3)),X3)
    | ~ in(esk7_2(X1,set_difference(X2,X3)),X2) ),
    inference(spm,[status(thm)],[c_0_34,c_0_35]) ).

cnf(c_0_47,plain,
    ( subset(set_difference(X1,X2),X3)
    | in(esk7_2(set_difference(X1,X2),X3),X1) ),
    inference(spm,[status(thm)],[c_0_36,c_0_32]) ).

fof(c_0_48,lemma,
    ! [X48,X49] : set_union2(X48,set_difference(X49,X48)) = set_union2(X48,X49),
    inference(variable_rename,[status(thm)],[t39_xboole_1]) ).

cnf(c_0_49,lemma,
    ( set_difference(X1,X2) = empty_set
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_50,lemma,
    subset(set_difference(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

fof(c_0_51,plain,
    ! [X97] : set_union2(X97,empty_set) = X97,
    inference(variable_rename,[status(thm)],[t1_boole]) ).

fof(c_0_52,lemma,
    ! [X51,X52] : set_difference(set_union2(X51,X52),X52) = set_difference(X51,X52),
    inference(variable_rename,[status(thm)],[t40_xboole_1]) ).

cnf(c_0_53,plain,
    ( in(X1,X2)
    | ~ in(X1,X3)
    | X3 != set_intersection2(X2,X4) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_54,plain,
    ( in(X1,X2)
    | ~ in(X1,X3)
    | X3 != set_intersection2(X4,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_55,lemma,
    ( subset(X1,X2)
    | ~ subset(X1,set_intersection2(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_40,c_0_41]) ).

cnf(c_0_56,lemma,
    ( set_intersection2(X1,X2) = X1
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_57,lemma,
    subset(set_intersection2(X1,X2),X2),
    inference(spm,[status(thm)],[c_0_41,c_0_43]) ).

fof(c_0_58,lemma,
    ! [X92,X93] : subset(X92,set_union2(X92,X93)),
    inference(variable_rename,[status(thm)],[t7_xboole_1]) ).

fof(c_0_59,plain,
    ! [X99,X100] : set_union2(X99,X100) = set_union2(X100,X99),
    inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0]) ).

cnf(c_0_60,plain,
    ( subset(set_difference(X1,set_union2(X2,X3)),X4)
    | ~ in(esk7_2(set_difference(X1,set_union2(X2,X3)),X4),X3) ),
    inference(spm,[status(thm)],[c_0_44,c_0_45]) ).

cnf(c_0_61,plain,
    ( subset(set_difference(X1,X2),set_difference(X1,X3))
    | in(esk7_2(set_difference(X1,X2),set_difference(X1,X3)),X3) ),
    inference(spm,[status(thm)],[c_0_46,c_0_47]) ).

cnf(c_0_62,lemma,
    set_union2(X1,set_difference(X2,X1)) = set_union2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_63,lemma,
    set_difference(set_difference(X1,X2),X1) = empty_set,
    inference(spm,[status(thm)],[c_0_49,c_0_50]) ).

cnf(c_0_64,plain,
    set_union2(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_51]) ).

cnf(c_0_65,lemma,
    set_difference(set_union2(X1,X2),X2) = set_difference(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_52]) ).

cnf(c_0_66,plain,
    ( in(X1,X2)
    | ~ in(X1,set_intersection2(X2,X3)) ),
    inference(er,[status(thm)],[c_0_53]) ).

cnf(c_0_67,plain,
    ( in(X1,X2)
    | ~ in(X1,set_intersection2(X3,X2)) ),
    inference(er,[status(thm)],[c_0_54]) ).

cnf(c_0_68,lemma,
    subset(set_difference(set_intersection2(X1,X2),X3),X1),
    inference(spm,[status(thm)],[c_0_55,c_0_50]) ).

cnf(c_0_69,lemma,
    set_intersection2(X1,set_intersection2(X2,X1)) = set_intersection2(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_57]),c_0_43]) ).

cnf(c_0_70,lemma,
    subset(X1,set_union2(X1,X2)),
    inference(split_conjunct,[status(thm)],[c_0_58]) ).

cnf(c_0_71,plain,
    set_union2(X1,X2) = set_union2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_72,plain,
    subset(set_difference(X1,set_union2(X2,X3)),set_difference(X1,X3)),
    inference(spm,[status(thm)],[c_0_60,c_0_61]) ).

cnf(c_0_73,lemma,
    set_union2(X1,set_difference(X1,X2)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62,c_0_63]),c_0_64]) ).

fof(c_0_74,plain,
    ! [X1] :
      ( X1 = empty_set
    <=> ! [X2] : ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[d1_xboole_0]) ).

cnf(c_0_75,lemma,
    subset(set_difference(X1,X2),set_union2(X1,X2)),
    inference(spm,[status(thm)],[c_0_50,c_0_65]) ).

cnf(c_0_76,plain,
    ( subset(set_intersection2(X1,X2),X3)
    | in(esk7_2(set_intersection2(X1,X2),X3),X1) ),
    inference(spm,[status(thm)],[c_0_66,c_0_32]) ).

cnf(c_0_77,plain,
    ( subset(set_intersection2(X1,X2),X3)
    | in(esk7_2(set_intersection2(X1,X2),X3),X2) ),
    inference(spm,[status(thm)],[c_0_67,c_0_32]) ).

cnf(c_0_78,lemma,
    subset(set_difference(set_intersection2(X1,X2),X3),X2),
    inference(spm,[status(thm)],[c_0_68,c_0_69]) ).

cnf(c_0_79,lemma,
    set_intersection2(X1,set_union2(X1,X2)) = X1,
    inference(spm,[status(thm)],[c_0_56,c_0_70]) ).

cnf(c_0_80,lemma,
    set_difference(set_union2(X1,X2),X1) = set_difference(X2,X1),
    inference(spm,[status(thm)],[c_0_65,c_0_71]) ).

cnf(c_0_81,lemma,
    subset(set_difference(X1,X2),set_difference(X1,set_difference(X2,X3))),
    inference(spm,[status(thm)],[c_0_72,c_0_73]) ).

fof(c_0_82,plain,
    ! [X58,X59,X60] :
      ( ( X58 != empty_set
        | ~ in(X59,X58) )
      & ( in(esk5_1(X60),X60)
        | X60 = empty_set ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_74])])])])]) ).

cnf(c_0_83,lemma,
    subset(set_difference(X1,set_difference(X2,X1)),set_union2(X1,X2)),
    inference(spm,[status(thm)],[c_0_75,c_0_62]) ).

fof(c_0_84,lemma,
    ! [X85,X86] :
      ( ~ subset(X85,X86)
      | set_union2(X85,X86) = X86 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])]) ).

cnf(c_0_85,lemma,
    subset(X1,set_union2(X2,X1)),
    inference(spm,[status(thm)],[c_0_70,c_0_71]) ).

cnf(c_0_86,lemma,
    set_union2(X1,set_union2(X2,X1)) = set_union2(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62,c_0_65]),c_0_62]) ).

cnf(c_0_87,plain,
    ( subset(set_intersection2(set_difference(X1,X2),X3),X4)
    | ~ in(esk7_2(set_intersection2(set_difference(X1,X2),X3),X4),X2) ),
    inference(spm,[status(thm)],[c_0_31,c_0_76]) ).

cnf(c_0_88,plain,
    ( subset(set_intersection2(X1,X2),set_difference(X2,X3))
    | in(esk7_2(set_intersection2(X1,X2),set_difference(X2,X3)),X3) ),
    inference(spm,[status(thm)],[c_0_46,c_0_77]) ).

cnf(c_0_89,lemma,
    subset(set_difference(X1,X2),set_union2(X1,X3)),
    inference(spm,[status(thm)],[c_0_78,c_0_79]) ).

cnf(c_0_90,lemma,
    set_difference(set_union2(X1,X2),set_difference(X2,X1)) = set_difference(X1,set_difference(X2,X1)),
    inference(spm,[status(thm)],[c_0_65,c_0_62]) ).

cnf(c_0_91,lemma,
    set_union2(set_union2(X1,X2),set_difference(X2,X1)) = set_union2(X1,X2),
    inference(spm,[status(thm)],[c_0_73,c_0_80]) ).

cnf(c_0_92,lemma,
    set_intersection2(set_difference(X1,X2),set_difference(X1,set_difference(X2,X3))) = set_difference(X1,X2),
    inference(spm,[status(thm)],[c_0_56,c_0_81]) ).

cnf(c_0_93,lemma,
    set_difference(set_difference(X1,X2),X2) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_80,c_0_62]),c_0_80]) ).

cnf(c_0_94,lemma,
    set_intersection2(X1,set_difference(X1,X2)) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_50]),c_0_43]) ).

cnf(c_0_95,plain,
    ( in(esk5_1(X1),X1)
    | X1 = empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_82]) ).

fof(c_0_96,plain,
    ! [X82,X83] :
      ( ( subset(X82,X83)
        | X82 != X83 )
      & ( subset(X83,X82)
        | X82 != X83 )
      & ( ~ subset(X82,X83)
        | ~ subset(X83,X82)
        | X82 = X83 ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])]) ).

cnf(c_0_97,lemma,
    ( subset(X1,set_union2(X2,X3))
    | ~ subset(X1,set_difference(X2,set_difference(X3,X2))) ),
    inference(spm,[status(thm)],[c_0_40,c_0_83]) ).

cnf(c_0_98,lemma,
    ( set_union2(X1,X2) = X2
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_84]) ).

cnf(c_0_99,lemma,
    subset(set_union2(X1,X2),set_union2(X2,X1)),
    inference(spm,[status(thm)],[c_0_85,c_0_86]) ).

cnf(c_0_100,lemma,
    set_difference(X1,set_union2(X2,X1)) = empty_set,
    inference(spm,[status(thm)],[c_0_49,c_0_85]) ).

fof(c_0_101,plain,
    ! [X50] : set_difference(X50,empty_set) = X50,
    inference(variable_rename,[status(thm)],[t3_boole]) ).

cnf(c_0_102,plain,
    subset(set_intersection2(set_difference(X1,X2),X3),set_difference(X3,X2)),
    inference(spm,[status(thm)],[c_0_87,c_0_88]) ).

cnf(c_0_103,lemma,
    set_intersection2(set_difference(X1,X2),set_union2(X1,X3)) = set_difference(X1,X2),
    inference(spm,[status(thm)],[c_0_56,c_0_89]) ).

cnf(c_0_104,lemma,
    set_difference(set_difference(X1,X2),set_difference(X2,set_difference(X1,X2))) = set_difference(set_union2(X2,X1),set_difference(X2,set_difference(X1,X2))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90,c_0_90]),c_0_71]),c_0_91]) ).

cnf(c_0_105,lemma,
    set_difference(set_difference(X1,X2),set_difference(X2,X3)) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92,c_0_93]),c_0_94]) ).

cnf(c_0_106,plain,
    ( set_intersection2(X1,X2) = empty_set
    | in(esk5_1(set_intersection2(X1,X2)),X2) ),
    inference(spm,[status(thm)],[c_0_67,c_0_95]) ).

cnf(c_0_107,plain,
    ( set_intersection2(X1,X2) = empty_set
    | in(esk5_1(set_intersection2(X1,X2)),X1) ),
    inference(spm,[status(thm)],[c_0_66,c_0_95]) ).

cnf(c_0_108,plain,
    ( X1 = X2
    | ~ subset(X1,X2)
    | ~ subset(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_96]) ).

cnf(c_0_109,lemma,
    ( subset(X1,X2)
    | set_difference(X1,X2) != empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_110,lemma,
    subset(set_difference(set_difference(X1,set_difference(X2,X1)),X3),set_union2(X1,X2)),
    inference(spm,[status(thm)],[c_0_97,c_0_50]) ).

cnf(c_0_111,lemma,
    set_union2(set_union2(X1,X2),set_union2(X2,X1)) = set_union2(X2,X1),
    inference(spm,[status(thm)],[c_0_98,c_0_99]) ).

cnf(c_0_112,lemma,
    set_difference(set_union2(X1,X2),set_union2(X2,X1)) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_86]),c_0_100]) ).

cnf(c_0_113,plain,
    set_difference(X1,empty_set) = X1,
    inference(split_conjunct,[status(thm)],[c_0_101]) ).

cnf(c_0_114,lemma,
    subset(set_difference(X1,X2),set_difference(set_union2(X1,X3),X2)),
    inference(spm,[status(thm)],[c_0_102,c_0_103]) ).

cnf(c_0_115,lemma,
    set_difference(set_union2(X1,X2),set_difference(X1,set_difference(X2,X1))) = set_difference(X2,X1),
    inference(rw,[status(thm)],[c_0_104,c_0_105]) ).

cnf(c_0_116,plain,
    ( set_intersection2(X1,set_difference(X2,X3)) = empty_set
    | ~ in(esk5_1(set_intersection2(X1,set_difference(X2,X3))),X3) ),
    inference(spm,[status(thm)],[c_0_31,c_0_106]) ).

cnf(c_0_117,plain,
    ( set_intersection2(set_difference(X1,X2),X3) = empty_set
    | in(esk5_1(set_intersection2(set_difference(X1,X2),X3)),X1) ),
    inference(spm,[status(thm)],[c_0_36,c_0_107]) ).

cnf(c_0_118,plain,
    ( in(X1,X4)
    | ~ in(X1,X2)
    | ~ in(X1,X3)
    | X4 != set_intersection2(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_119,lemma,
    ( X1 = X2
    | set_difference(X2,X1) != empty_set
    | ~ subset(X1,X2) ),
    inference(spm,[status(thm)],[c_0_108,c_0_109]) ).

cnf(c_0_120,lemma,
    subset(set_difference(set_union2(X1,X2),X3),set_union2(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110,c_0_111]),c_0_112]),c_0_113]) ).

cnf(c_0_121,lemma,
    subset(set_difference(X1,set_difference(X1,set_difference(X2,X1))),set_difference(X2,X1)),
    inference(spm,[status(thm)],[c_0_114,c_0_115]) ).

cnf(c_0_122,plain,
    set_intersection2(set_difference(X1,X2),set_difference(X3,X1)) = empty_set,
    inference(spm,[status(thm)],[c_0_116,c_0_117]) ).

fof(c_0_123,plain,
    ! [X105] : set_union2(X105,X105) = X105,
    inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[idempotence_k2_xboole_0])]) ).

cnf(c_0_124,plain,
    ( in(X1,set_intersection2(X2,X3))
    | ~ in(X1,X3)
    | ~ in(X1,X2) ),
    inference(er,[status(thm)],[c_0_118]) ).

cnf(c_0_125,lemma,
    ( set_difference(set_union2(X1,X2),X3) = set_union2(X2,X1)
    | set_difference(set_union2(X2,X1),set_difference(set_union2(X1,X2),X3)) != empty_set ),
    inference(spm,[status(thm)],[c_0_119,c_0_120]) ).

cnf(c_0_126,lemma,
    set_difference(X1,set_difference(X1,set_difference(X2,X1))) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_121]),c_0_122]) ).

cnf(c_0_127,plain,
    set_union2(X1,X1) = X1,
    inference(split_conjunct,[status(thm)],[c_0_123]) ).

cnf(c_0_128,plain,
    ( subset(X1,set_intersection2(X2,X3))
    | ~ in(esk7_2(X1,set_intersection2(X2,X3)),X3)
    | ~ in(esk7_2(X1,set_intersection2(X2,X3)),X2) ),
    inference(spm,[status(thm)],[c_0_34,c_0_124]) ).

cnf(c_0_129,lemma,
    set_difference(set_union2(X1,X2),set_difference(X1,X2)) = set_difference(X2,set_difference(X1,X2)),
    inference(spm,[status(thm)],[c_0_90,c_0_71]) ).

cnf(c_0_130,lemma,
    set_difference(X1,set_difference(X2,X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_125,c_0_126]),c_0_127]),c_0_127]),c_0_127]) ).

cnf(c_0_131,plain,
    ( subset(set_intersection2(X1,X2),set_intersection2(X3,X2))
    | ~ in(esk7_2(set_intersection2(X1,X2),set_intersection2(X3,X2)),X3) ),
    inference(spm,[status(thm)],[c_0_128,c_0_77]) ).

cnf(c_0_132,plain,
    ( subset(set_intersection2(set_difference(X1,X2),X3),X4)
    | in(esk7_2(set_intersection2(set_difference(X1,X2),X3),X4),X1) ),
    inference(spm,[status(thm)],[c_0_36,c_0_76]) ).

cnf(c_0_133,lemma,
    set_difference(set_union2(X1,X2),set_difference(X1,X2)) = X2,
    inference(rw,[status(thm)],[c_0_129,c_0_130]) ).

cnf(c_0_134,plain,
    ( subset(set_intersection2(X1,set_difference(X2,X3)),X4)
    | ~ in(esk7_2(set_intersection2(X1,set_difference(X2,X3)),X4),X3) ),
    inference(spm,[status(thm)],[c_0_31,c_0_77]) ).

cnf(c_0_135,plain,
    ( subset(set_intersection2(X1,X2),set_difference(X1,X3))
    | in(esk7_2(set_intersection2(X1,X2),set_difference(X1,X3)),X3) ),
    inference(spm,[status(thm)],[c_0_46,c_0_76]) ).

cnf(c_0_136,plain,
    subset(set_intersection2(set_difference(X1,X2),X3),set_intersection2(X1,X3)),
    inference(spm,[status(thm)],[c_0_131,c_0_132]) ).

cnf(c_0_137,lemma,
    subset(set_difference(X1,set_difference(X1,X2)),X2),
    inference(spm,[status(thm)],[c_0_114,c_0_133]) ).

cnf(c_0_138,plain,
    subset(set_intersection2(X1,set_difference(X2,X3)),set_difference(X1,X3)),
    inference(spm,[status(thm)],[c_0_134,c_0_135]) ).

fof(c_0_139,negated_conjecture,
    ~ ! [X1,X2] : set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(assume_negation,[status(cth)],[t48_xboole_1]) ).

cnf(c_0_140,plain,
    subset(set_intersection2(X1,set_difference(X2,X3)),set_intersection2(X2,X1)),
    inference(spm,[status(thm)],[c_0_136,c_0_43]) ).

cnf(c_0_141,lemma,
    set_intersection2(X1,set_difference(X2,set_difference(X2,X1))) = set_difference(X2,set_difference(X2,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_137]),c_0_43]) ).

cnf(c_0_142,lemma,
    set_difference(set_intersection2(X1,set_difference(X2,X3)),set_difference(X1,X3)) = empty_set,
    inference(spm,[status(thm)],[c_0_49,c_0_138]) ).

fof(c_0_143,negated_conjecture,
    set_difference(esk1_0,set_difference(esk1_0,esk2_0)) != set_intersection2(esk1_0,esk2_0),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_139])])]) ).

cnf(c_0_144,lemma,
    subset(set_difference(X1,set_difference(X1,X2)),set_intersection2(X1,X2)),
    inference(spm,[status(thm)],[c_0_140,c_0_141]) ).

cnf(c_0_145,lemma,
    set_difference(set_intersection2(X1,X2),set_difference(X1,set_difference(X3,X2))) = empty_set,
    inference(spm,[status(thm)],[c_0_142,c_0_130]) ).

cnf(c_0_146,negated_conjecture,
    set_difference(esk1_0,set_difference(esk1_0,esk2_0)) != set_intersection2(esk1_0,esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_143]) ).

cnf(c_0_147,lemma,
    set_difference(X1,set_difference(X1,X2)) = set_intersection2(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_144]),c_0_145])]) ).

cnf(c_0_148,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_146,c_0_147])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.11  % Problem    : SEU138+2 : TPTP v8.1.2. Released v3.3.0.
% 0.10/0.12  % Command    : run_E %s %d THM
% 0.12/0.32  % Computer : n014.cluster.edu
% 0.12/0.32  % Model    : x86_64 x86_64
% 0.12/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.32  % Memory   : 8042.1875MB
% 0.12/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.32  % CPULimit   : 2400
% 0.12/0.32  % WCLimit    : 300
% 0.12/0.32  % DateTime   : Mon Oct  2 08:59:50 EDT 2023
% 0.12/0.32  % CPUTime    : 
% 0.17/0.44  Running first-order theorem proving
% 0.17/0.44  Running: /export/starexec/sandbox/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox/tmp/tmp.jO4ySwF23p/E---3.1_9672.p
% 630.77/80.32  # Version: 3.1pre001
% 630.77/80.32  # Preprocessing class: FSMSSMSSSSSNFFN.
% 630.77/80.32  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 630.77/80.32  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 1500s (5) cores
% 630.77/80.32  # Starting new_bool_3 with 300s (1) cores
% 630.77/80.32  # Starting new_bool_1 with 300s (1) cores
% 630.77/80.32  # Starting sh5l with 300s (1) cores
% 630.77/80.32  # new_bool_1 with pid 9752 completed with status 0
% 630.77/80.32  # Result found by new_bool_1
% 630.77/80.32  # Preprocessing class: FSMSSMSSSSSNFFN.
% 630.77/80.32  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 630.77/80.32  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 1500s (5) cores
% 630.77/80.32  # Starting new_bool_3 with 300s (1) cores
% 630.77/80.32  # Starting new_bool_1 with 300s (1) cores
% 630.77/80.32  # SinE strategy is GSinE(CountFormulas,hypos,1.5,,3,20000,1.0)
% 630.77/80.32  # Search class: FGHSM-FFMF32-SFFFFFNN
% 630.77/80.32  # Scheduled 6 strats onto 1 cores with 300 seconds (300 total)
% 630.77/80.32  # Starting G-E--_300_C01_F1_SE_CS_SP_S0Y with 163s (1) cores
% 630.77/80.32  # G-E--_300_C01_F1_SE_CS_SP_S0Y with pid 9755 completed with status 0
% 630.77/80.32  # Result found by G-E--_300_C01_F1_SE_CS_SP_S0Y
% 630.77/80.32  # Preprocessing class: FSMSSMSSSSSNFFN.
% 630.77/80.32  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 630.77/80.32  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 1500s (5) cores
% 630.77/80.32  # Starting new_bool_3 with 300s (1) cores
% 630.77/80.32  # Starting new_bool_1 with 300s (1) cores
% 630.77/80.32  # SinE strategy is GSinE(CountFormulas,hypos,1.5,,3,20000,1.0)
% 630.77/80.32  # Search class: FGHSM-FFMF32-SFFFFFNN
% 630.77/80.32  # Scheduled 6 strats onto 1 cores with 300 seconds (300 total)
% 630.77/80.32  # Starting G-E--_300_C01_F1_SE_CS_SP_S0Y with 163s (1) cores
% 630.77/80.32  # Preprocessing time       : 0.001 s
% 630.77/80.32  
% 630.77/80.32  # Proof found!
% 630.77/80.32  # SZS status Theorem
% 630.77/80.32  # SZS output start CNFRefutation
% See solution above
% 630.77/80.32  # Parsed axioms                        : 51
% 630.77/80.32  # Removed by relevancy pruning/SinE    : 8
% 630.77/80.32  # Initial clauses                      : 66
% 630.77/80.32  # Removed in clause preprocessing      : 0
% 630.77/80.32  # Initial clauses in saturation        : 66
% 630.77/80.32  # Processed clauses                    : 181589
% 630.77/80.32  # ...of these trivial                  : 7204
% 630.77/80.32  # ...subsumed                          : 168077
% 630.77/80.32  # ...remaining for further processing  : 6308
% 630.77/80.32  # Other redundant clauses eliminated   : 40497
% 630.77/80.32  # Clauses deleted for lack of memory   : 388191
% 630.77/80.32  # Backward-subsumed                    : 202
% 630.77/80.32  # Backward-rewritten                   : 445
% 630.77/80.32  # Generated clauses                    : 5907855
% 630.77/80.32  # ...of the previous two non-redundant : 4289319
% 630.77/80.32  # ...aggressively subsumed             : 0
% 630.77/80.32  # Contextual simplify-reflections      : 34
% 630.77/80.32  # Paramodulations                      : 5866456
% 630.77/80.32  # Factorizations                       : 902
% 630.77/80.32  # NegExts                              : 0
% 630.77/80.32  # Equation resolutions                 : 40497
% 630.77/80.32  # Total rewrite steps                  : 3862564
% 630.77/80.32  # Propositional unsat checks           : 0
% 630.77/80.32  #    Propositional check models        : 0
% 630.77/80.32  #    Propositional check unsatisfiable : 0
% 630.77/80.32  #    Propositional clauses             : 0
% 630.77/80.32  #    Propositional clauses after purity: 0
% 630.77/80.32  #    Propositional unsat core size     : 0
% 630.77/80.32  #    Propositional preprocessing time  : 0.000
% 630.77/80.32  #    Propositional encoding time       : 0.000
% 630.77/80.32  #    Propositional solver time         : 0.000
% 630.77/80.32  #    Success case prop preproc time    : 0.000
% 630.77/80.32  #    Success case prop encoding time   : 0.000
% 630.77/80.32  #    Success case prop solver time     : 0.000
% 630.77/80.32  # Current number of processed clauses  : 5649
% 630.77/80.32  #    Positive orientable unit clauses  : 1586
% 630.77/80.32  #    Positive unorientable unit clauses: 2
% 630.77/80.32  #    Negative unit clauses             : 17
% 630.77/80.32  #    Non-unit-clauses                  : 4044
% 630.77/80.32  # Current number of unprocessed clauses: 1640757
% 630.77/80.32  # ...number of literals in the above   : 4316993
% 630.77/80.32  # Current number of archived formulas  : 0
% 630.77/80.32  # Current number of archived clauses   : 647
% 630.77/80.32  # Clause-clause subsumption calls (NU) : 3849429
% 630.77/80.32  # Rec. Clause-clause subsumption calls : 1999298
% 630.77/80.32  # Non-unit clause-clause subsumptions  : 146803
% 630.77/80.32  # Unit Clause-clause subsumption calls : 67883
% 630.77/80.32  # Rewrite failures with RHS unbound    : 0
% 630.77/80.32  # BW rewrite match attempts            : 24288
% 630.77/80.32  # BW rewrite match successes           : 217
% 630.77/80.32  # Condensation attempts                : 0
% 630.77/80.32  # Condensation successes               : 0
% 630.77/80.32  # Termbank termtop insertions          : 57261403
% 630.77/80.32  
% 630.77/80.32  # -------------------------------------------------
% 630.77/80.32  # User time                : 76.701 s
% 630.77/80.32  # System time              : 1.679 s
% 630.77/80.32  # Total time               : 78.379 s
% 630.77/80.32  # Maximum resident set size: 1868 pages
% 630.77/80.32  
% 630.77/80.32  # -------------------------------------------------
% 630.77/80.32  # User time                : 76.703 s
% 630.77/80.32  # System time              : 1.683 s
% 630.77/80.32  # Total time               : 78.386 s
% 630.77/80.32  # Maximum resident set size: 1732 pages
% 630.77/80.32  % E---3.1 exiting
% 630.77/80.32  % E---3.1 exiting
%------------------------------------------------------------------------------