TSTP Solution File: SEU130+2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SEU130+2 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n002.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 17:51:07 EDT 2023

% Result   : Theorem 0.21s 0.47s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : SEU130+2 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.15/0.35  % Computer : n002.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit : 300
% 0.15/0.35  % WCLimit  : 300
% 0.15/0.35  % DateTime : Wed Aug 23 14:29:31 EDT 2023
% 0.15/0.35  % CPUTime  : 
% 0.21/0.47  Command-line arguments: --set-join --lhs-weight 1 --no-flatten-goal --complete-subsets --goal-heuristic
% 0.21/0.47  
% 0.21/0.47  % SZS status Theorem
% 0.21/0.47  
% 0.21/0.47  % SZS output start Proof
% 0.21/0.47  Take the following subset of the input axioms:
% 0.21/0.47    fof(commutativity_k3_xboole_0, axiom, ![A, B]: set_intersection2(A, B)=set_intersection2(B, A)).
% 0.21/0.48    fof(d10_xboole_0, axiom, ![A2, B2]: (A2=B2 <=> (subset(A2, B2) & subset(B2, A2)))).
% 0.21/0.48    fof(idempotence_k3_xboole_0, axiom, ![A3, B2]: set_intersection2(A3, A3)=A3).
% 0.21/0.48    fof(t17_xboole_1, lemma, ![A3, B2]: subset(set_intersection2(A3, B2), A3)).
% 0.21/0.48    fof(t26_xboole_1, lemma, ![C, B2, A2_2]: (subset(A2_2, B2) => subset(set_intersection2(A2_2, C), set_intersection2(B2, C)))).
% 0.21/0.48    fof(t28_xboole_1, conjecture, ![A3, B2]: (subset(A3, B2) => set_intersection2(A3, B2)=A3)).
% 0.21/0.48  
% 0.21/0.48  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.48  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.48  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.48    fresh(y, y, x1...xn) = u
% 0.21/0.48    C => fresh(s, t, x1...xn) = v
% 0.21/0.48  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.48  variables of u and v.
% 0.21/0.48  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.48  input problem has no model of domain size 1).
% 0.21/0.48  
% 0.21/0.48  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.48  
% 0.21/0.48  Axiom 1 (idempotence_k3_xboole_0): set_intersection2(X, X) = X.
% 0.21/0.48  Axiom 2 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X).
% 0.21/0.48  Axiom 3 (t28_xboole_1): subset(a, b) = true2.
% 0.21/0.48  Axiom 4 (d10_xboole_0_1): fresh7(X, X, Y, Z) = Y.
% 0.21/0.48  Axiom 5 (d10_xboole_0_1): fresh6(X, X, Y, Z) = Z.
% 0.21/0.48  Axiom 6 (t17_xboole_1): subset(set_intersection2(X, Y), X) = true2.
% 0.21/0.48  Axiom 7 (t26_xboole_1): fresh12(X, X, Y, Z, W) = true2.
% 0.21/0.48  Axiom 8 (d10_xboole_0_1): fresh7(subset(X, Y), true2, Y, X) = fresh6(subset(Y, X), true2, Y, X).
% 0.21/0.48  Axiom 9 (t26_xboole_1): fresh12(subset(X, Y), true2, X, Y, Z) = subset(set_intersection2(X, Z), set_intersection2(Y, Z)).
% 0.21/0.48  
% 0.21/0.48  Goal 1 (t28_xboole_1_1): set_intersection2(a, b) = a.
% 0.21/0.48  Proof:
% 0.21/0.48    set_intersection2(a, b)
% 0.21/0.48  = { by axiom 2 (commutativity_k3_xboole_0) }
% 0.21/0.48    set_intersection2(b, a)
% 0.21/0.48  = { by axiom 5 (d10_xboole_0_1) R->L }
% 0.21/0.48    fresh6(true2, true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 7 (t26_xboole_1) R->L }
% 0.21/0.48    fresh6(fresh12(true2, true2, a, b, a), true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 3 (t28_xboole_1) R->L }
% 0.21/0.48    fresh6(fresh12(subset(a, b), true2, a, b, a), true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 9 (t26_xboole_1) }
% 0.21/0.48    fresh6(subset(set_intersection2(a, a), set_intersection2(b, a)), true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 1 (idempotence_k3_xboole_0) }
% 0.21/0.48    fresh6(subset(a, set_intersection2(b, a)), true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 8 (d10_xboole_0_1) R->L }
% 0.21/0.48    fresh7(subset(set_intersection2(b, a), a), true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 2 (commutativity_k3_xboole_0) R->L }
% 0.21/0.48    fresh7(subset(set_intersection2(a, b), a), true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 6 (t17_xboole_1) }
% 0.21/0.48    fresh7(true2, true2, a, set_intersection2(b, a))
% 0.21/0.48  = { by axiom 4 (d10_xboole_0_1) }
% 0.21/0.48    a
% 0.21/0.48  % SZS output end Proof
% 0.21/0.48  
% 0.21/0.48  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------