TSTP Solution File: SEU120+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : SEU120+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 12:38:29 EDT 2022

% Result   : Theorem 0.13s 0.35s
% Output   : CNFRefutation 0.13s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :    7
% Syntax   : Number of formulae    :   61 (  21 unt;   0 def)
%            Number of atoms       :  121 (  41 equ)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :  132 (  72   ~;  29   |;  17   &)
%                                         (  10 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    5 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   6 con; 0-2 aty)
%            Number of variables   :   76 (   4 sgn  50   !;  16   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(d1_xboole_0,axiom,
    ! [A] :
      ( A = empty_set
    <=> ! [B] : ~ in(B,A) ) ).

fof(d7_xboole_0,axiom,
    ! [A,B] :
      ( disjoint(A,B)
    <=> set_intersection2(A,B) = empty_set ) ).

fof(t4_xboole_0,conjecture,
    ! [A,B] :
      ( ~ ( ~ disjoint(A,B)
          & ! [C] : ~ in(C,set_intersection2(A,B)) )
      & ~ ( ? [C] : in(C,set_intersection2(A,B))
          & disjoint(A,B) ) ) ).

fof(subgoal_0,plain,
    ! [A,B] :
      ( ~ disjoint(A,B)
     => ~ ! [C] : ~ in(C,set_intersection2(A,B)) ),
    inference(strip,[],[t4_xboole_0]) ).

fof(subgoal_1,plain,
    ! [A,B] :
      ( ( ~ ( ~ disjoint(A,B)
            & ! [C] : ~ in(C,set_intersection2(A,B)) )
        & ? [C] : in(C,set_intersection2(A,B)) )
     => ~ disjoint(A,B) ),
    inference(strip,[],[t4_xboole_0]) ).

fof(negate_0_0,plain,
    ~ ! [A,B] :
        ( ~ disjoint(A,B)
       => ~ ! [C] : ~ in(C,set_intersection2(A,B)) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ! [A,B] :
      ( set_intersection2(A,B) != empty_set
    <=> ~ disjoint(A,B) ),
    inference(canonicalize,[],[d7_xboole_0]) ).

fof(normalize_0_1,plain,
    ! [A,B] :
      ( set_intersection2(A,B) != empty_set
    <=> ~ disjoint(A,B) ),
    inference(specialize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ! [A,B] :
      ( ( set_intersection2(A,B) != empty_set
        | disjoint(A,B) )
      & ( ~ disjoint(A,B)
        | set_intersection2(A,B) = empty_set ) ),
    inference(clausify,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ! [A,B] :
      ( set_intersection2(A,B) != empty_set
      | disjoint(A,B) ),
    inference(conjunct,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    ? [A,B] :
      ( ~ disjoint(A,B)
      & ! [C] : ~ in(C,set_intersection2(A,B)) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_5,plain,
    ( ~ disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)
    & ! [C] : ~ in(C,set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)) ),
    inference(skolemize,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [C] : ~ in(C,set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ! [C] : ~ in(C,set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),
    inference(specialize,[],[normalize_0_6]) ).

fof(normalize_0_8,plain,
    ! [A] :
      ( A != empty_set
    <=> ? [B] : in(B,A) ),
    inference(canonicalize,[],[d1_xboole_0]) ).

fof(normalize_0_9,plain,
    ! [A] :
      ( A != empty_set
    <=> ? [B] : in(B,A) ),
    inference(specialize,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ! [A,B] :
      ( ( A != empty_set
        | ~ in(B,A) )
      & ( A = empty_set
        | in(skolemFOFtoCNF_B(A),A) ) ),
    inference(clausify,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    ! [A] :
      ( A = empty_set
      | in(skolemFOFtoCNF_B(A),A) ),
    inference(conjunct,[],[normalize_0_10]) ).

fof(normalize_0_12,plain,
    ~ disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1),
    inference(conjunct,[],[normalize_0_5]) ).

cnf(refute_0_0,plain,
    ( set_intersection2(A,B) != empty_set
    | disjoint(A,B) ),
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_1,plain,
    ( set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) != empty_set
    | disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) ),
    inference(subst,[],[refute_0_0:[bind(A,$fot(skolemFOFtoCNF_A_2)),bind(B,$fot(skolemFOFtoCNF_B_1))]]) ).

cnf(refute_0_2,plain,
    ~ in(C,set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_3,plain,
    ~ in(skolemFOFtoCNF_B(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),
    inference(subst,[],[refute_0_2:[bind(C,$fot(skolemFOFtoCNF_B(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1))))]]) ).

cnf(refute_0_4,plain,
    ( A = empty_set
    | in(skolemFOFtoCNF_B(A),A) ),
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_5,plain,
    ( set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) = empty_set
    | in(skolemFOFtoCNF_B(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)) ),
    inference(subst,[],[refute_0_4:[bind(A,$fot(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)))]]) ).

cnf(refute_0_6,plain,
    set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) = empty_set,
    inference(resolve,[$cnf( in(skolemFOFtoCNF_B(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)),set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1)) )],[refute_0_5,refute_0_3]) ).

cnf(refute_0_7,plain,
    ( empty_set != empty_set
    | set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) != empty_set
    | set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) = empty_set ),
    introduced(tautology,[equality,[$cnf( $equal(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1),empty_set) ),[1],$fot(empty_set)]]) ).

cnf(refute_0_8,plain,
    ( empty_set != empty_set
    | set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) = empty_set ),
    inference(resolve,[$cnf( $equal(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1),empty_set) )],[refute_0_6,refute_0_7]) ).

cnf(refute_0_9,plain,
    ( empty_set != empty_set
    | disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) ),
    inference(resolve,[$cnf( $equal(set_intersection2(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1),empty_set) )],[refute_0_8,refute_0_1]) ).

cnf(refute_0_10,plain,
    empty_set = empty_set,
    introduced(tautology,[refl,[$fot(empty_set)]]) ).

cnf(refute_0_11,plain,
    disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1),
    inference(resolve,[$cnf( $equal(empty_set,empty_set) )],[refute_0_10,refute_0_9]) ).

cnf(refute_0_12,plain,
    ~ disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1),
    inference(canonicalize,[],[normalize_0_12]) ).

cnf(refute_0_13,plain,
    $false,
    inference(resolve,[$cnf( disjoint(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B_1) )],[refute_0_11,refute_0_12]) ).

fof(negate_1_0,plain,
    ~ ! [A,B] :
        ( ( ~ ( ~ disjoint(A,B)
              & ! [C] : ~ in(C,set_intersection2(A,B)) )
          & ? [C] : in(C,set_intersection2(A,B)) )
       => ~ disjoint(A,B) ),
    inference(negate,[],[subgoal_1]) ).

fof(normalize_1_0,plain,
    ? [A,B] :
      ( disjoint(A,B)
      & ( disjoint(A,B)
        | ? [C] : in(C,set_intersection2(A,B)) )
      & ? [C] : in(C,set_intersection2(A,B)) ),
    inference(canonicalize,[],[negate_1_0]) ).

fof(normalize_1_1,plain,
    ( disjoint(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)
    & ( disjoint(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)
      | ? [C] : in(C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)) )
    & ? [C] : in(C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)) ),
    inference(skolemize,[],[normalize_1_0]) ).

fof(normalize_1_2,plain,
    ? [C] : in(C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)),
    inference(conjunct,[],[normalize_1_1]) ).

fof(normalize_1_3,plain,
    in(skolemFOFtoCNF_C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)),
    inference(skolemize,[],[normalize_1_2]) ).

fof(normalize_1_4,plain,
    disjoint(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2),
    inference(conjunct,[],[normalize_1_1]) ).

fof(normalize_1_5,plain,
    ! [A,B] :
      ( set_intersection2(A,B) != empty_set
    <=> ~ disjoint(A,B) ),
    inference(canonicalize,[],[d7_xboole_0]) ).

fof(normalize_1_6,plain,
    ! [A,B] :
      ( set_intersection2(A,B) != empty_set
    <=> ~ disjoint(A,B) ),
    inference(specialize,[],[normalize_1_5]) ).

fof(normalize_1_7,plain,
    ! [A,B] :
      ( ( set_intersection2(A,B) != empty_set
        | disjoint(A,B) )
      & ( ~ disjoint(A,B)
        | set_intersection2(A,B) = empty_set ) ),
    inference(clausify,[],[normalize_1_6]) ).

fof(normalize_1_8,plain,
    ! [A,B] :
      ( ~ disjoint(A,B)
      | set_intersection2(A,B) = empty_set ),
    inference(conjunct,[],[normalize_1_7]) ).

fof(normalize_1_9,plain,
    ! [A] :
      ( A != empty_set
    <=> ? [B] : in(B,A) ),
    inference(canonicalize,[],[d1_xboole_0]) ).

fof(normalize_1_10,plain,
    ! [A] :
      ( A != empty_set
    <=> ? [B] : in(B,A) ),
    inference(specialize,[],[normalize_1_9]) ).

fof(normalize_1_11,plain,
    ! [A,B] :
      ( ( A != empty_set
        | ~ in(B,A) )
      & ( A = empty_set
        | in(skolemFOFtoCNF_B(A),A) ) ),
    inference(clausify,[],[normalize_1_10]) ).

fof(normalize_1_12,plain,
    ! [A,B] :
      ( A != empty_set
      | ~ in(B,A) ),
    inference(conjunct,[],[normalize_1_11]) ).

cnf(refute_1_0,plain,
    in(skolemFOFtoCNF_C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)),
    inference(canonicalize,[],[normalize_1_3]) ).

cnf(refute_1_1,plain,
    disjoint(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2),
    inference(canonicalize,[],[normalize_1_4]) ).

cnf(refute_1_2,plain,
    ( ~ disjoint(A,B)
    | set_intersection2(A,B) = empty_set ),
    inference(canonicalize,[],[normalize_1_8]) ).

cnf(refute_1_3,plain,
    ( ~ disjoint(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)
    | set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2) = empty_set ),
    inference(subst,[],[refute_1_2:[bind(A,$fot(skolemFOFtoCNF_A_3)),bind(B,$fot(skolemFOFtoCNF_B_2))]]) ).

cnf(refute_1_4,plain,
    set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2) = empty_set,
    inference(resolve,[$cnf( disjoint(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2) )],[refute_1_1,refute_1_3]) ).

cnf(refute_1_5,plain,
    ( set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2) != empty_set
    | ~ in(skolemFOFtoCNF_C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2))
    | in(skolemFOFtoCNF_C,empty_set) ),
    introduced(tautology,[equality,[$cnf( in(skolemFOFtoCNF_C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)) ),[1],$fot(empty_set)]]) ).

cnf(refute_1_6,plain,
    ( ~ in(skolemFOFtoCNF_C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2))
    | in(skolemFOFtoCNF_C,empty_set) ),
    inference(resolve,[$cnf( $equal(set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2),empty_set) )],[refute_1_4,refute_1_5]) ).

cnf(refute_1_7,plain,
    in(skolemFOFtoCNF_C,empty_set),
    inference(resolve,[$cnf( in(skolemFOFtoCNF_C,set_intersection2(skolemFOFtoCNF_A_3,skolemFOFtoCNF_B_2)) )],[refute_1_0,refute_1_6]) ).

cnf(refute_1_8,plain,
    ( A != empty_set
    | ~ in(B,A) ),
    inference(canonicalize,[],[normalize_1_12]) ).

cnf(refute_1_9,plain,
    ( empty_set != empty_set
    | ~ in(B,empty_set) ),
    inference(subst,[],[refute_1_8:[bind(A,$fot(empty_set))]]) ).

cnf(refute_1_10,plain,
    empty_set = empty_set,
    introduced(tautology,[refl,[$fot(empty_set)]]) ).

cnf(refute_1_11,plain,
    ~ in(B,empty_set),
    inference(resolve,[$cnf( $equal(empty_set,empty_set) )],[refute_1_10,refute_1_9]) ).

cnf(refute_1_12,plain,
    ~ in(skolemFOFtoCNF_C,empty_set),
    inference(subst,[],[refute_1_11:[bind(B,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_1_13,plain,
    $false,
    inference(resolve,[$cnf( in(skolemFOFtoCNF_C,empty_set) )],[refute_1_7,refute_1_12]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SEU120+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.13  % Command  : metis --show proof --show saturation %s
% 0.13/0.34  % Computer : n007.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sun Jun 19 23:22:14 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.13/0.35  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.13/0.35  
% 0.13/0.35  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.13/0.36  
%------------------------------------------------------------------------------