TSTP Solution File: SEU120+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SEU120+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Jul 19 07:10:43 EDT 2022

% Result   : Theorem 0.41s 1.07s
% Output   : Refutation 0.41s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : SEU120+1 : TPTP v8.1.0. Released v3.3.0.
% 0.12/0.12  % Command  : bliksem %s
% 0.12/0.33  % Computer : n023.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % DateTime : Mon Jun 20 00:00:18 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.41/1.07  *** allocated 10000 integers for termspace/termends
% 0.41/1.07  *** allocated 10000 integers for clauses
% 0.41/1.07  *** allocated 10000 integers for justifications
% 0.41/1.07  Bliksem 1.12
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Automatic Strategy Selection
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Clauses:
% 0.41/1.07  
% 0.41/1.07  { ! in( X, Y ), ! in( Y, X ) }.
% 0.41/1.07  { set_intersection2( X, Y ) = set_intersection2( Y, X ) }.
% 0.41/1.07  { ! X = empty_set, ! in( Y, X ) }.
% 0.41/1.07  { in( skol1( X ), X ), X = empty_set }.
% 0.41/1.07  { ! disjoint( X, Y ), set_intersection2( X, Y ) = empty_set }.
% 0.41/1.07  { ! set_intersection2( X, Y ) = empty_set, disjoint( X, Y ) }.
% 0.41/1.07  { && }.
% 0.41/1.07  { && }.
% 0.41/1.07  { empty( empty_set ) }.
% 0.41/1.07  { set_intersection2( X, X ) = X }.
% 0.41/1.07  { empty( skol2 ) }.
% 0.41/1.07  { ! empty( skol3 ) }.
% 0.41/1.07  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.41/1.07  { alpha1( skol4, skol6 ), in( skol7, set_intersection2( skol4, skol6 ) ) }
% 0.41/1.07    .
% 0.41/1.07  { alpha1( skol4, skol6 ), disjoint( skol4, skol6 ) }.
% 0.41/1.07  { ! alpha1( X, Y ), ! disjoint( X, Y ) }.
% 0.41/1.07  { ! alpha1( X, Y ), ! in( Z, set_intersection2( X, Y ) ) }.
% 0.41/1.07  { disjoint( X, Y ), in( skol5( X, Y ), set_intersection2( X, Y ) ), alpha1
% 0.41/1.07    ( X, Y ) }.
% 0.41/1.07  
% 0.41/1.07  percentage equality = 0.206897, percentage horn = 0.764706
% 0.41/1.07  This is a problem with some equality
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Options Used:
% 0.41/1.07  
% 0.41/1.07  useres =            1
% 0.41/1.07  useparamod =        1
% 0.41/1.07  useeqrefl =         1
% 0.41/1.07  useeqfact =         1
% 0.41/1.07  usefactor =         1
% 0.41/1.07  usesimpsplitting =  0
% 0.41/1.07  usesimpdemod =      5
% 0.41/1.07  usesimpres =        3
% 0.41/1.07  
% 0.41/1.07  resimpinuse      =  1000
% 0.41/1.07  resimpclauses =     20000
% 0.41/1.07  substype =          eqrewr
% 0.41/1.07  backwardsubs =      1
% 0.41/1.07  selectoldest =      5
% 0.41/1.07  
% 0.41/1.07  litorderings [0] =  split
% 0.41/1.07  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.41/1.07  
% 0.41/1.07  termordering =      kbo
% 0.41/1.07  
% 0.41/1.07  litapriori =        0
% 0.41/1.07  termapriori =       1
% 0.41/1.07  litaposteriori =    0
% 0.41/1.07  termaposteriori =   0
% 0.41/1.07  demodaposteriori =  0
% 0.41/1.07  ordereqreflfact =   0
% 0.41/1.07  
% 0.41/1.07  litselect =         negord
% 0.41/1.07  
% 0.41/1.07  maxweight =         15
% 0.41/1.07  maxdepth =          30000
% 0.41/1.07  maxlength =         115
% 0.41/1.07  maxnrvars =         195
% 0.41/1.07  excuselevel =       1
% 0.41/1.07  increasemaxweight = 1
% 0.41/1.07  
% 0.41/1.07  maxselected =       10000000
% 0.41/1.07  maxnrclauses =      10000000
% 0.41/1.07  
% 0.41/1.07  showgenerated =    0
% 0.41/1.07  showkept =         0
% 0.41/1.07  showselected =     0
% 0.41/1.07  showdeleted =      0
% 0.41/1.07  showresimp =       1
% 0.41/1.07  showstatus =       2000
% 0.41/1.07  
% 0.41/1.07  prologoutput =     0
% 0.41/1.07  nrgoals =          5000000
% 0.41/1.07  totalproof =       1
% 0.41/1.07  
% 0.41/1.07  Symbols occurring in the translation:
% 0.41/1.07  
% 0.41/1.07  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.41/1.07  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.41/1.07  &&  [3, 0]      (w:1, o:4, a:1, s:1, b:0), 
% 0.41/1.07  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.41/1.07  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.41/1.07  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.41/1.07  in  [37, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.41/1.07  set_intersection2  [38, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.41/1.07  empty_set  [39, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.41/1.07  disjoint  [40, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.41/1.07  empty  [41, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.41/1.07  alpha1  [43, 2]      (w:1, o:49, a:1, s:1, b:1), 
% 0.41/1.07  skol1  [44, 1]      (w:1, o:21, a:1, s:1, b:1), 
% 0.41/1.07  skol2  [45, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.41/1.07  skol3  [46, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.41/1.07  skol4  [47, 0]      (w:1, o:12, a:1, s:1, b:1), 
% 0.41/1.07  skol5  [48, 2]      (w:1, o:50, a:1, s:1, b:1), 
% 0.41/1.07  skol6  [49, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.41/1.07  skol7  [50, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Starting Search:
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Bliksems!, er is een bewijs:
% 0.41/1.07  % SZS status Theorem
% 0.41/1.07  % SZS output start Refutation
% 0.41/1.07  
% 0.41/1.07  (1) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = set_intersection2( 
% 0.41/1.07    Y, X ) }.
% 0.41/1.07  (2) {G0,W6,D2,L2,V2,M2} I { ! X = empty_set, ! in( Y, X ) }.
% 0.41/1.07  (3) {G0,W7,D3,L2,V1,M2} I { in( skol1( X ), X ), X = empty_set }.
% 0.41/1.07  (4) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), set_intersection2( X, Y ) 
% 0.41/1.07    ==> empty_set }.
% 0.41/1.07  (5) {G0,W8,D3,L2,V2,M2} I { ! set_intersection2( X, Y ) ==> empty_set, 
% 0.41/1.07    disjoint( X, Y ) }.
% 0.41/1.07  (11) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.41/1.07  (12) {G0,W8,D3,L2,V0,M2} I { alpha1( skol4, skol6 ), in( skol7, 
% 0.41/1.07    set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  (13) {G0,W6,D2,L2,V0,M2} I { alpha1( skol4, skol6 ), disjoint( skol4, skol6
% 0.41/1.07     ) }.
% 0.41/1.07  (14) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! disjoint( X, Y ) }.
% 0.41/1.07  (15) {G0,W8,D3,L2,V3,M2} I { ! alpha1( X, Y ), ! in( Z, set_intersection2( 
% 0.41/1.07    X, Y ) ) }.
% 0.41/1.07  (18) {G1,W3,D2,L1,V1,M1} Q(2) { ! in( X, empty_set ) }.
% 0.41/1.07  (19) {G1,W6,D2,L2,V2,M2} R(11,14) { ! disjoint( X, Y ), ! alpha1( Y, X )
% 0.41/1.07     }.
% 0.41/1.07  (38) {G1,W8,D3,L2,V0,M2} R(4,13) { set_intersection2( skol4, skol6 ) ==> 
% 0.41/1.07    empty_set, alpha1( skol4, skol6 ) }.
% 0.41/1.07  (82) {G2,W3,D2,L1,V0,M1} S(12);d(38);r(18) { alpha1( skol4, skol6 ) }.
% 0.41/1.07  (83) {G3,W3,D2,L1,V0,M1} R(82,19) { ! disjoint( skol6, skol4 ) }.
% 0.41/1.07  (85) {G4,W5,D3,L1,V0,M1} R(83,5) { ! set_intersection2( skol6, skol4 ) ==> 
% 0.41/1.07    empty_set }.
% 0.41/1.07  (107) {G3,W5,D3,L1,V1,M1} R(15,82) { ! in( X, set_intersection2( skol4, 
% 0.41/1.07    skol6 ) ) }.
% 0.41/1.07  (118) {G4,W5,D3,L1,V1,M1} P(1,107) { ! in( X, set_intersection2( skol6, 
% 0.41/1.07    skol4 ) ) }.
% 0.41/1.07  (119) {G5,W5,D3,L1,V0,M1} R(118,3) { set_intersection2( skol6, skol4 ) ==> 
% 0.41/1.07    empty_set }.
% 0.41/1.07  (126) {G6,W0,D0,L0,V0,M0} S(119);r(85) {  }.
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  % SZS output end Refutation
% 0.41/1.07  found a proof!
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Unprocessed initial clauses:
% 0.41/1.07  
% 0.41/1.07  (128) {G0,W6,D2,L2,V2,M2}  { ! in( X, Y ), ! in( Y, X ) }.
% 0.41/1.07  (129) {G0,W7,D3,L1,V2,M1}  { set_intersection2( X, Y ) = set_intersection2
% 0.41/1.07    ( Y, X ) }.
% 0.41/1.07  (130) {G0,W6,D2,L2,V2,M2}  { ! X = empty_set, ! in( Y, X ) }.
% 0.41/1.07  (131) {G0,W7,D3,L2,V1,M2}  { in( skol1( X ), X ), X = empty_set }.
% 0.41/1.07  (132) {G0,W8,D3,L2,V2,M2}  { ! disjoint( X, Y ), set_intersection2( X, Y ) 
% 0.41/1.07    = empty_set }.
% 0.41/1.07  (133) {G0,W8,D3,L2,V2,M2}  { ! set_intersection2( X, Y ) = empty_set, 
% 0.41/1.07    disjoint( X, Y ) }.
% 0.41/1.07  (134) {G0,W1,D1,L1,V0,M1}  { && }.
% 0.41/1.07  (135) {G0,W1,D1,L1,V0,M1}  { && }.
% 0.41/1.07  (136) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.41/1.07  (137) {G0,W5,D3,L1,V1,M1}  { set_intersection2( X, X ) = X }.
% 0.41/1.07  (138) {G0,W2,D2,L1,V0,M1}  { empty( skol2 ) }.
% 0.41/1.07  (139) {G0,W2,D2,L1,V0,M1}  { ! empty( skol3 ) }.
% 0.41/1.07  (140) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.41/1.07  (141) {G0,W8,D3,L2,V0,M2}  { alpha1( skol4, skol6 ), in( skol7, 
% 0.41/1.07    set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  (142) {G0,W6,D2,L2,V0,M2}  { alpha1( skol4, skol6 ), disjoint( skol4, skol6
% 0.41/1.07     ) }.
% 0.41/1.07  (143) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! disjoint( X, Y ) }.
% 0.41/1.07  (144) {G0,W8,D3,L2,V3,M2}  { ! alpha1( X, Y ), ! in( Z, set_intersection2( 
% 0.41/1.07    X, Y ) ) }.
% 0.41/1.07  (145) {G0,W13,D3,L3,V2,M3}  { disjoint( X, Y ), in( skol5( X, Y ), 
% 0.41/1.07    set_intersection2( X, Y ) ), alpha1( X, Y ) }.
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Total Proof:
% 0.41/1.07  
% 0.41/1.07  subsumption: (1) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = 
% 0.41/1.07    set_intersection2( Y, X ) }.
% 0.41/1.07  parent0: (129) {G0,W7,D3,L1,V2,M1}  { set_intersection2( X, Y ) = 
% 0.41/1.07    set_intersection2( Y, X ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (2) {G0,W6,D2,L2,V2,M2} I { ! X = empty_set, ! in( Y, X ) }.
% 0.41/1.07  parent0: (130) {G0,W6,D2,L2,V2,M2}  { ! X = empty_set, ! in( Y, X ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (3) {G0,W7,D3,L2,V1,M2} I { in( skol1( X ), X ), X = empty_set
% 0.41/1.07     }.
% 0.41/1.07  parent0: (131) {G0,W7,D3,L2,V1,M2}  { in( skol1( X ), X ), X = empty_set
% 0.41/1.07     }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (4) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), 
% 0.41/1.07    set_intersection2( X, Y ) ==> empty_set }.
% 0.41/1.07  parent0: (132) {G0,W8,D3,L2,V2,M2}  { ! disjoint( X, Y ), set_intersection2
% 0.41/1.07    ( X, Y ) = empty_set }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (5) {G0,W8,D3,L2,V2,M2} I { ! set_intersection2( X, Y ) ==> 
% 0.41/1.07    empty_set, disjoint( X, Y ) }.
% 0.41/1.07  parent0: (133) {G0,W8,D3,L2,V2,M2}  { ! set_intersection2( X, Y ) = 
% 0.41/1.07    empty_set, disjoint( X, Y ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (11) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, 
% 0.41/1.07    X ) }.
% 0.41/1.07  parent0: (140) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X )
% 0.41/1.07     }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (12) {G0,W8,D3,L2,V0,M2} I { alpha1( skol4, skol6 ), in( skol7
% 0.41/1.07    , set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  parent0: (141) {G0,W8,D3,L2,V0,M2}  { alpha1( skol4, skol6 ), in( skol7, 
% 0.41/1.07    set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (13) {G0,W6,D2,L2,V0,M2} I { alpha1( skol4, skol6 ), disjoint
% 0.41/1.07    ( skol4, skol6 ) }.
% 0.41/1.07  parent0: (142) {G0,W6,D2,L2,V0,M2}  { alpha1( skol4, skol6 ), disjoint( 
% 0.41/1.07    skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (14) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! disjoint( X, 
% 0.41/1.07    Y ) }.
% 0.41/1.07  parent0: (143) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! disjoint( X, Y )
% 0.41/1.07     }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (15) {G0,W8,D3,L2,V3,M2} I { ! alpha1( X, Y ), ! in( Z, 
% 0.41/1.07    set_intersection2( X, Y ) ) }.
% 0.41/1.07  parent0: (144) {G0,W8,D3,L2,V3,M2}  { ! alpha1( X, Y ), ! in( Z, 
% 0.41/1.07    set_intersection2( X, Y ) ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07     Z := Z
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (191) {G0,W6,D2,L2,V2,M2}  { ! empty_set = X, ! in( Y, X ) }.
% 0.41/1.07  parent0[0]: (2) {G0,W6,D2,L2,V2,M2} I { ! X = empty_set, ! in( Y, X ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqrefl: (192) {G0,W3,D2,L1,V1,M1}  { ! in( X, empty_set ) }.
% 0.41/1.07  parent0[0]: (191) {G0,W6,D2,L2,V2,M2}  { ! empty_set = X, ! in( Y, X ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := empty_set
% 0.41/1.07     Y := X
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (18) {G1,W3,D2,L1,V1,M1} Q(2) { ! in( X, empty_set ) }.
% 0.41/1.07  parent0: (192) {G0,W3,D2,L1,V1,M1}  { ! in( X, empty_set ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (193) {G1,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! disjoint( Y, X
% 0.41/1.07     ) }.
% 0.41/1.07  parent0[1]: (14) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), ! disjoint( X, Y
% 0.41/1.07     ) }.
% 0.41/1.07  parent1[1]: (11) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.41/1.07     ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07     X := Y
% 0.41/1.07     Y := X
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (19) {G1,W6,D2,L2,V2,M2} R(11,14) { ! disjoint( X, Y ), ! 
% 0.41/1.07    alpha1( Y, X ) }.
% 0.41/1.07  parent0: (193) {G1,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), ! disjoint( Y, X )
% 0.41/1.07     }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := Y
% 0.41/1.07     Y := X
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 1
% 0.41/1.07     1 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (194) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_intersection2( X, Y
% 0.41/1.07     ), ! disjoint( X, Y ) }.
% 0.41/1.07  parent0[1]: (4) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), 
% 0.41/1.07    set_intersection2( X, Y ) ==> empty_set }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (195) {G1,W8,D3,L2,V0,M2}  { empty_set ==> set_intersection2( 
% 0.41/1.07    skol4, skol6 ), alpha1( skol4, skol6 ) }.
% 0.41/1.07  parent0[1]: (194) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_intersection2( X
% 0.41/1.07    , Y ), ! disjoint( X, Y ) }.
% 0.41/1.07  parent1[1]: (13) {G0,W6,D2,L2,V0,M2} I { alpha1( skol4, skol6 ), disjoint( 
% 0.41/1.07    skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := skol4
% 0.41/1.07     Y := skol6
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (196) {G1,W8,D3,L2,V0,M2}  { set_intersection2( skol4, skol6 ) ==> 
% 0.41/1.07    empty_set, alpha1( skol4, skol6 ) }.
% 0.41/1.07  parent0[0]: (195) {G1,W8,D3,L2,V0,M2}  { empty_set ==> set_intersection2( 
% 0.41/1.07    skol4, skol6 ), alpha1( skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (38) {G1,W8,D3,L2,V0,M2} R(4,13) { set_intersection2( skol4, 
% 0.41/1.07    skol6 ) ==> empty_set, alpha1( skol4, skol6 ) }.
% 0.41/1.07  parent0: (196) {G1,W8,D3,L2,V0,M2}  { set_intersection2( skol4, skol6 ) ==>
% 0.41/1.07     empty_set, alpha1( skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07     1 ==> 1
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  paramod: (198) {G1,W9,D2,L3,V0,M3}  { in( skol7, empty_set ), alpha1( skol4
% 0.41/1.07    , skol6 ), alpha1( skol4, skol6 ) }.
% 0.41/1.07  parent0[0]: (38) {G1,W8,D3,L2,V0,M2} R(4,13) { set_intersection2( skol4, 
% 0.41/1.07    skol6 ) ==> empty_set, alpha1( skol4, skol6 ) }.
% 0.41/1.07  parent1[1; 2]: (12) {G0,W8,D3,L2,V0,M2} I { alpha1( skol4, skol6 ), in( 
% 0.41/1.07    skol7, set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  factor: (199) {G1,W6,D2,L2,V0,M2}  { in( skol7, empty_set ), alpha1( skol4
% 0.41/1.07    , skol6 ) }.
% 0.41/1.07  parent0[1, 2]: (198) {G1,W9,D2,L3,V0,M3}  { in( skol7, empty_set ), alpha1
% 0.41/1.07    ( skol4, skol6 ), alpha1( skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (200) {G2,W3,D2,L1,V0,M1}  { alpha1( skol4, skol6 ) }.
% 0.41/1.07  parent0[0]: (18) {G1,W3,D2,L1,V1,M1} Q(2) { ! in( X, empty_set ) }.
% 0.41/1.07  parent1[0]: (199) {G1,W6,D2,L2,V0,M2}  { in( skol7, empty_set ), alpha1( 
% 0.41/1.07    skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := skol7
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (82) {G2,W3,D2,L1,V0,M1} S(12);d(38);r(18) { alpha1( skol4, 
% 0.41/1.07    skol6 ) }.
% 0.41/1.07  parent0: (200) {G2,W3,D2,L1,V0,M1}  { alpha1( skol4, skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (201) {G2,W3,D2,L1,V0,M1}  { ! disjoint( skol6, skol4 ) }.
% 0.41/1.07  parent0[1]: (19) {G1,W6,D2,L2,V2,M2} R(11,14) { ! disjoint( X, Y ), ! 
% 0.41/1.07    alpha1( Y, X ) }.
% 0.41/1.07  parent1[0]: (82) {G2,W3,D2,L1,V0,M1} S(12);d(38);r(18) { alpha1( skol4, 
% 0.41/1.07    skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := skol6
% 0.41/1.07     Y := skol4
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (83) {G3,W3,D2,L1,V0,M1} R(82,19) { ! disjoint( skol6, skol4 )
% 0.41/1.07     }.
% 0.41/1.07  parent0: (201) {G2,W3,D2,L1,V0,M1}  { ! disjoint( skol6, skol4 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (202) {G0,W8,D3,L2,V2,M2}  { ! empty_set ==> set_intersection2( X, 
% 0.41/1.07    Y ), disjoint( X, Y ) }.
% 0.41/1.07  parent0[0]: (5) {G0,W8,D3,L2,V2,M2} I { ! set_intersection2( X, Y ) ==> 
% 0.41/1.07    empty_set, disjoint( X, Y ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07     Y := Y
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (203) {G1,W5,D3,L1,V0,M1}  { ! empty_set ==> set_intersection2
% 0.41/1.07    ( skol6, skol4 ) }.
% 0.41/1.07  parent0[0]: (83) {G3,W3,D2,L1,V0,M1} R(82,19) { ! disjoint( skol6, skol4 )
% 0.41/1.07     }.
% 0.41/1.07  parent1[1]: (202) {G0,W8,D3,L2,V2,M2}  { ! empty_set ==> set_intersection2
% 0.41/1.07    ( X, Y ), disjoint( X, Y ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07     X := skol6
% 0.41/1.07     Y := skol4
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (204) {G1,W5,D3,L1,V0,M1}  { ! set_intersection2( skol6, skol4 ) 
% 0.41/1.07    ==> empty_set }.
% 0.41/1.07  parent0[0]: (203) {G1,W5,D3,L1,V0,M1}  { ! empty_set ==> set_intersection2
% 0.41/1.07    ( skol6, skol4 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (85) {G4,W5,D3,L1,V0,M1} R(83,5) { ! set_intersection2( skol6
% 0.41/1.07    , skol4 ) ==> empty_set }.
% 0.41/1.07  parent0: (204) {G1,W5,D3,L1,V0,M1}  { ! set_intersection2( skol6, skol4 ) 
% 0.41/1.07    ==> empty_set }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (205) {G1,W5,D3,L1,V1,M1}  { ! in( X, set_intersection2( skol4
% 0.41/1.07    , skol6 ) ) }.
% 0.41/1.07  parent0[0]: (15) {G0,W8,D3,L2,V3,M2} I { ! alpha1( X, Y ), ! in( Z, 
% 0.41/1.07    set_intersection2( X, Y ) ) }.
% 0.41/1.07  parent1[0]: (82) {G2,W3,D2,L1,V0,M1} S(12);d(38);r(18) { alpha1( skol4, 
% 0.41/1.07    skol6 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := skol4
% 0.41/1.07     Y := skol6
% 0.41/1.07     Z := X
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (107) {G3,W5,D3,L1,V1,M1} R(15,82) { ! in( X, 
% 0.41/1.07    set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  parent0: (205) {G1,W5,D3,L1,V1,M1}  { ! in( X, set_intersection2( skol4, 
% 0.41/1.07    skol6 ) ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  paramod: (206) {G1,W5,D3,L1,V1,M1}  { ! in( X, set_intersection2( skol6, 
% 0.41/1.07    skol4 ) ) }.
% 0.41/1.07  parent0[0]: (1) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = 
% 0.41/1.07    set_intersection2( Y, X ) }.
% 0.41/1.07  parent1[0; 3]: (107) {G3,W5,D3,L1,V1,M1} R(15,82) { ! in( X, 
% 0.41/1.07    set_intersection2( skol4, skol6 ) ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := skol4
% 0.41/1.07     Y := skol6
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07     X := X
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (118) {G4,W5,D3,L1,V1,M1} P(1,107) { ! in( X, 
% 0.41/1.07    set_intersection2( skol6, skol4 ) ) }.
% 0.41/1.07  parent0: (206) {G1,W5,D3,L1,V1,M1}  { ! in( X, set_intersection2( skol6, 
% 0.41/1.07    skol4 ) ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (208) {G0,W7,D3,L2,V1,M2}  { empty_set = X, in( skol1( X ), X ) }.
% 0.41/1.07  parent0[1]: (3) {G0,W7,D3,L2,V1,M2} I { in( skol1( X ), X ), X = empty_set
% 0.41/1.07     }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := X
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (209) {G1,W5,D3,L1,V0,M1}  { empty_set = set_intersection2( 
% 0.41/1.07    skol6, skol4 ) }.
% 0.41/1.07  parent0[0]: (118) {G4,W5,D3,L1,V1,M1} P(1,107) { ! in( X, set_intersection2
% 0.41/1.07    ( skol6, skol4 ) ) }.
% 0.41/1.07  parent1[1]: (208) {G0,W7,D3,L2,V1,M2}  { empty_set = X, in( skol1( X ), X )
% 0.41/1.07     }.
% 0.41/1.07  substitution0:
% 0.41/1.07     X := skol1( set_intersection2( skol6, skol4 ) )
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07     X := set_intersection2( skol6, skol4 )
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  eqswap: (210) {G1,W5,D3,L1,V0,M1}  { set_intersection2( skol6, skol4 ) = 
% 0.41/1.07    empty_set }.
% 0.41/1.07  parent0[0]: (209) {G1,W5,D3,L1,V0,M1}  { empty_set = set_intersection2( 
% 0.41/1.07    skol6, skol4 ) }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (119) {G5,W5,D3,L1,V0,M1} R(118,3) { set_intersection2( skol6
% 0.41/1.07    , skol4 ) ==> empty_set }.
% 0.41/1.07  parent0: (210) {G1,W5,D3,L1,V0,M1}  { set_intersection2( skol6, skol4 ) = 
% 0.41/1.07    empty_set }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07     0 ==> 0
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  resolution: (213) {G5,W0,D0,L0,V0,M0}  {  }.
% 0.41/1.07  parent0[0]: (85) {G4,W5,D3,L1,V0,M1} R(83,5) { ! set_intersection2( skol6, 
% 0.41/1.07    skol4 ) ==> empty_set }.
% 0.41/1.07  parent1[0]: (119) {G5,W5,D3,L1,V0,M1} R(118,3) { set_intersection2( skol6, 
% 0.41/1.07    skol4 ) ==> empty_set }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  substitution1:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  subsumption: (126) {G6,W0,D0,L0,V0,M0} S(119);r(85) {  }.
% 0.41/1.07  parent0: (213) {G5,W0,D0,L0,V0,M0}  {  }.
% 0.41/1.07  substitution0:
% 0.41/1.07  end
% 0.41/1.07  permutation0:
% 0.41/1.07  end
% 0.41/1.07  
% 0.41/1.07  Proof check complete!
% 0.41/1.07  
% 0.41/1.07  Memory use:
% 0.41/1.07  
% 0.41/1.07  space for terms:        1333
% 0.41/1.07  space for clauses:      6510
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  clauses generated:      328
% 0.41/1.07  clauses kept:           127
% 0.41/1.07  clauses selected:       37
% 0.41/1.07  clauses deleted:        2
% 0.41/1.07  clauses inuse deleted:  0
% 0.41/1.07  
% 0.41/1.07  subsentry:          585
% 0.41/1.07  literals s-matched: 391
% 0.41/1.07  literals matched:   386
% 0.41/1.07  full subsumption:   11
% 0.41/1.07  
% 0.41/1.07  checksum:           758217002
% 0.41/1.07  
% 0.41/1.07  
% 0.41/1.07  Bliksem ended
%------------------------------------------------------------------------------