TSTP Solution File: SEU119+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SEU119+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art04.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Thu Dec 30 01:09:19 EST 2010

% Result   : Theorem 0.90s
% Output   : Solution 0.90s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP14412/SEU119+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... found
% SZS status THM for /tmp/SystemOnTPTP14412/SEU119+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP14412/SEU119+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 14508
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.00 WC
% # Preprocessing time     : 0.012 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(3, axiom,![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1),file('/tmp/SRASS.s.p', commutativity_k3_xboole_0)).
% fof(5, axiom,![X1]:![X2]:![X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))),file('/tmp/SRASS.s.p', d3_xboole_0)).
% fof(6, axiom,![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))),file('/tmp/SRASS.s.p', d1_xboole_0)).
% fof(9, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set),file('/tmp/SRASS.s.p', d7_xboole_0)).
% fof(13, conjecture,![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))),file('/tmp/SRASS.s.p', t3_xboole_0)).
% fof(14, negated_conjecture,~(![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))),inference(assume_negation,[status(cth)],[13])).
% fof(16, plain,![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))),inference(fof_simplification,[status(thm)],[6,theory(equality)])).
% fof(18, negated_conjecture,~(![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))),inference(fof_simplification,[status(thm)],[14,theory(equality)])).
% fof(25, plain,![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3),inference(variable_rename,[status(thm)],[3])).
% cnf(26,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)),inference(split_conjunct,[status(thm)],[25])).
% fof(29, plain,![X1]:![X2]:![X3]:((~(X3=set_intersection2(X1,X2))|![X4]:((~(in(X4,X3))|(in(X4,X1)&in(X4,X2)))&((~(in(X4,X1))|~(in(X4,X2)))|in(X4,X3))))&(?[X4]:((~(in(X4,X3))|(~(in(X4,X1))|~(in(X4,X2))))&(in(X4,X3)|(in(X4,X1)&in(X4,X2))))|X3=set_intersection2(X1,X2))),inference(fof_nnf,[status(thm)],[5])).
% fof(30, plain,![X5]:![X6]:![X7]:((~(X7=set_intersection2(X5,X6))|![X8]:((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))))&(?[X9]:((~(in(X9,X7))|(~(in(X9,X5))|~(in(X9,X6))))&(in(X9,X7)|(in(X9,X5)&in(X9,X6))))|X7=set_intersection2(X5,X6))),inference(variable_rename,[status(thm)],[29])).
% fof(31, plain,![X5]:![X6]:![X7]:((~(X7=set_intersection2(X5,X6))|![X8]:((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))))&(((~(in(esk1_3(X5,X6,X7),X7))|(~(in(esk1_3(X5,X6,X7),X5))|~(in(esk1_3(X5,X6,X7),X6))))&(in(esk1_3(X5,X6,X7),X7)|(in(esk1_3(X5,X6,X7),X5)&in(esk1_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))),inference(skolemize,[status(esa)],[30])).
% fof(32, plain,![X5]:![X6]:![X7]:![X8]:((((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7)))|~(X7=set_intersection2(X5,X6)))&(((~(in(esk1_3(X5,X6,X7),X7))|(~(in(esk1_3(X5,X6,X7),X5))|~(in(esk1_3(X5,X6,X7),X6))))&(in(esk1_3(X5,X6,X7),X7)|(in(esk1_3(X5,X6,X7),X5)&in(esk1_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))),inference(shift_quantors,[status(thm)],[31])).
% fof(33, plain,![X5]:![X6]:![X7]:![X8]:(((((in(X8,X5)|~(in(X8,X7)))|~(X7=set_intersection2(X5,X6)))&((in(X8,X6)|~(in(X8,X7)))|~(X7=set_intersection2(X5,X6))))&(((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))|~(X7=set_intersection2(X5,X6))))&(((~(in(esk1_3(X5,X6,X7),X7))|(~(in(esk1_3(X5,X6,X7),X5))|~(in(esk1_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))&(((in(esk1_3(X5,X6,X7),X5)|in(esk1_3(X5,X6,X7),X7))|X7=set_intersection2(X5,X6))&((in(esk1_3(X5,X6,X7),X6)|in(esk1_3(X5,X6,X7),X7))|X7=set_intersection2(X5,X6))))),inference(distribute,[status(thm)],[32])).
% cnf(34,plain,(X1=set_intersection2(X2,X3)|in(esk1_3(X2,X3,X1),X1)|in(esk1_3(X2,X3,X1),X3)),inference(split_conjunct,[status(thm)],[33])).
% cnf(35,plain,(X1=set_intersection2(X2,X3)|in(esk1_3(X2,X3,X1),X1)|in(esk1_3(X2,X3,X1),X2)),inference(split_conjunct,[status(thm)],[33])).
% cnf(37,plain,(in(X4,X1)|X1!=set_intersection2(X2,X3)|~in(X4,X3)|~in(X4,X2)),inference(split_conjunct,[status(thm)],[33])).
% cnf(38,plain,(in(X4,X3)|X1!=set_intersection2(X2,X3)|~in(X4,X1)),inference(split_conjunct,[status(thm)],[33])).
% fof(40, plain,![X1]:((~(X1=empty_set)|![X2]:~(in(X2,X1)))&(?[X2]:in(X2,X1)|X1=empty_set)),inference(fof_nnf,[status(thm)],[16])).
% fof(41, plain,![X3]:((~(X3=empty_set)|![X4]:~(in(X4,X3)))&(?[X5]:in(X5,X3)|X3=empty_set)),inference(variable_rename,[status(thm)],[40])).
% fof(42, plain,![X3]:((~(X3=empty_set)|![X4]:~(in(X4,X3)))&(in(esk2_1(X3),X3)|X3=empty_set)),inference(skolemize,[status(esa)],[41])).
% fof(43, plain,![X3]:![X4]:((~(in(X4,X3))|~(X3=empty_set))&(in(esk2_1(X3),X3)|X3=empty_set)),inference(shift_quantors,[status(thm)],[42])).
% cnf(45,plain,(X1!=empty_set|~in(X2,X1)),inference(split_conjunct,[status(thm)],[43])).
% fof(52, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_intersection2(X1,X2)=empty_set)&(~(set_intersection2(X1,X2)=empty_set)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[9])).
% fof(53, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_intersection2(X3,X4)=empty_set)&(~(set_intersection2(X3,X4)=empty_set)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[52])).
% cnf(54,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set),inference(split_conjunct,[status(thm)],[53])).
% cnf(55,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)),inference(split_conjunct,[status(thm)],[53])).
% fof(59, negated_conjecture,?[X1]:?[X2]:((~(disjoint(X1,X2))&![X3]:(~(in(X3,X1))|~(in(X3,X2))))|(?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[18])).
% fof(60, negated_conjecture,?[X4]:?[X5]:((~(disjoint(X4,X5))&![X6]:(~(in(X6,X4))|~(in(X6,X5))))|(?[X7]:(in(X7,X4)&in(X7,X5))&disjoint(X4,X5))),inference(variable_rename,[status(thm)],[59])).
% fof(61, negated_conjecture,((~(disjoint(esk5_0,esk6_0))&![X6]:(~(in(X6,esk5_0))|~(in(X6,esk6_0))))|((in(esk7_0,esk5_0)&in(esk7_0,esk6_0))&disjoint(esk5_0,esk6_0))),inference(skolemize,[status(esa)],[60])).
% fof(62, negated_conjecture,![X6]:(((~(in(X6,esk5_0))|~(in(X6,esk6_0)))&~(disjoint(esk5_0,esk6_0)))|((in(esk7_0,esk5_0)&in(esk7_0,esk6_0))&disjoint(esk5_0,esk6_0))),inference(shift_quantors,[status(thm)],[61])).
% fof(63, negated_conjecture,![X6]:((((in(esk7_0,esk5_0)|(~(in(X6,esk5_0))|~(in(X6,esk6_0))))&(in(esk7_0,esk6_0)|(~(in(X6,esk5_0))|~(in(X6,esk6_0)))))&(disjoint(esk5_0,esk6_0)|(~(in(X6,esk5_0))|~(in(X6,esk6_0)))))&(((in(esk7_0,esk5_0)|~(disjoint(esk5_0,esk6_0)))&(in(esk7_0,esk6_0)|~(disjoint(esk5_0,esk6_0))))&(disjoint(esk5_0,esk6_0)|~(disjoint(esk5_0,esk6_0))))),inference(distribute,[status(thm)],[62])).
% cnf(65,negated_conjecture,(in(esk7_0,esk6_0)|~disjoint(esk5_0,esk6_0)),inference(split_conjunct,[status(thm)],[63])).
% cnf(66,negated_conjecture,(in(esk7_0,esk5_0)|~disjoint(esk5_0,esk6_0)),inference(split_conjunct,[status(thm)],[63])).
% cnf(67,negated_conjecture,(disjoint(esk5_0,esk6_0)|~in(X1,esk6_0)|~in(X1,esk5_0)),inference(split_conjunct,[status(thm)],[63])).
% cnf(68,negated_conjecture,(in(esk7_0,esk6_0)|~in(X1,esk6_0)|~in(X1,esk5_0)),inference(split_conjunct,[status(thm)],[63])).
% cnf(69,negated_conjecture,(in(esk7_0,esk5_0)|~in(X1,esk6_0)|~in(X1,esk5_0)),inference(split_conjunct,[status(thm)],[63])).
% cnf(74,negated_conjecture,(in(esk7_0,esk5_0)|set_intersection2(esk5_0,esk6_0)!=empty_set),inference(spm,[status(thm)],[66,54,theory(equality)])).
% cnf(75,negated_conjecture,(in(esk7_0,esk6_0)|set_intersection2(esk5_0,esk6_0)!=empty_set),inference(spm,[status(thm)],[65,54,theory(equality)])).
% cnf(83,plain,(in(X1,X2)|~in(X1,set_intersection2(X3,X2))),inference(er,[status(thm)],[38,theory(equality)])).
% cnf(93,plain,(in(X1,set_intersection2(X2,X3))|~in(X1,X3)|~in(X1,X2)),inference(er,[status(thm)],[37,theory(equality)])).
% cnf(103,plain,(set_intersection2(X2,X3)=X1|in(esk1_3(X2,X3,X1),X3)|empty_set!=X1),inference(spm,[status(thm)],[45,34,theory(equality)])).
% cnf(105,negated_conjecture,(in(esk7_0,esk5_0)|set_intersection2(X1,esk6_0)=X2|in(esk1_3(X1,esk6_0,X2),X2)|~in(esk1_3(X1,esk6_0,X2),esk5_0)),inference(spm,[status(thm)],[69,34,theory(equality)])).
% cnf(106,negated_conjecture,(in(esk7_0,esk6_0)|set_intersection2(X1,esk6_0)=X2|in(esk1_3(X1,esk6_0,X2),X2)|~in(esk1_3(X1,esk6_0,X2),esk5_0)),inference(spm,[status(thm)],[68,34,theory(equality)])).
% cnf(129,plain,(set_intersection2(X2,X1)=X3|empty_set!=X1|empty_set!=X3),inference(spm,[status(thm)],[45,103,theory(equality)])).
% cnf(132,plain,(set_intersection2(X1,X2)=empty_set|empty_set!=X2),inference(er,[status(thm)],[129,theory(equality)])).
% cnf(172,plain,(in(X1,X2)|~in(X1,empty_set)|empty_set!=X2),inference(spm,[status(thm)],[83,132,theory(equality)])).
% cnf(182,plain,(empty_set!=X2|~in(X1,empty_set)),inference(csr,[status(thm)],[172,45])).
% fof(183, plain,(~(epred1_0)<=>![X2]:~(empty_set=X2)),introduced(definition),['split']).
% cnf(184,plain,(epred1_0|empty_set!=X2),inference(split_equiv,[status(thm)],[183])).
% fof(185, plain,(~(epred2_0)<=>![X1]:~(in(X1,empty_set))),introduced(definition),['split']).
% cnf(186,plain,(epred2_0|~in(X1,empty_set)),inference(split_equiv,[status(thm)],[185])).
% cnf(187,plain,(~epred2_0|~epred1_0),inference(apply_def,[status(esa)],[inference(apply_def,[status(esa)],[182,183,theory(equality)]),185,theory(equality)]),['split']).
% cnf(188,plain,(epred1_0),inference(er,[status(thm)],[184,theory(equality)])).
% cnf(189,plain,(~epred2_0|$false),inference(rw,[status(thm)],[187,188,theory(equality)])).
% cnf(190,plain,(~epred2_0),inference(cn,[status(thm)],[189,theory(equality)])).
% cnf(193,plain,(epred2_0|set_intersection2(X1,X2)=empty_set|in(esk1_3(X1,X2,empty_set),X1)),inference(spm,[status(thm)],[186,35,theory(equality)])).
% cnf(195,plain,(epred2_0|set_intersection2(X1,empty_set)=X2|empty_set!=X2),inference(spm,[status(thm)],[186,103,theory(equality)])).
% cnf(202,plain,(set_intersection2(X1,empty_set)=X2|empty_set!=X2),inference(sr,[status(thm)],[195,190,theory(equality)])).
% cnf(203,plain,(set_intersection2(X1,empty_set)=empty_set),inference(er,[status(thm)],[202,theory(equality)])).
% cnf(204,plain,(empty_set=set_intersection2(empty_set,X1)),inference(spm,[status(thm)],[26,203,theory(equality)])).
% cnf(215,plain,(in(X1,X2)|~in(X1,empty_set)),inference(spm,[status(thm)],[83,204,theory(equality)])).
% cnf(278,plain,(set_intersection2(X1,X2)=empty_set|in(esk1_3(X1,X2,empty_set),X1)),inference(sr,[status(thm)],[193,190,theory(equality)])).
% cnf(295,plain,(empty_set!=set_intersection2(X1,X2)|~in(X3,X2)|~in(X3,X1)),inference(spm,[status(thm)],[45,93,theory(equality)])).
% cnf(394,plain,(~in(X2,X1)|~in(X2,empty_set)),inference(spm,[status(thm)],[295,204,theory(equality)])).
% cnf(406,plain,(~in(X2,empty_set)),inference(csr,[status(thm)],[394,215])).
% cnf(461,negated_conjecture,(set_intersection2(esk5_0,esk6_0)=empty_set|in(esk1_3(esk5_0,esk6_0,empty_set),empty_set)|in(esk7_0,esk5_0)),inference(spm,[status(thm)],[105,278,theory(equality)])).
% cnf(466,negated_conjecture,(set_intersection2(esk5_0,esk6_0)=empty_set|in(esk7_0,esk5_0)),inference(sr,[status(thm)],[461,406,theory(equality)])).
% cnf(467,negated_conjecture,(in(esk7_0,esk5_0)),inference(csr,[status(thm)],[466,74])).
% cnf(510,negated_conjecture,(set_intersection2(esk5_0,esk6_0)=empty_set|in(esk1_3(esk5_0,esk6_0,empty_set),empty_set)|in(esk7_0,esk6_0)),inference(spm,[status(thm)],[106,278,theory(equality)])).
% cnf(515,negated_conjecture,(set_intersection2(esk5_0,esk6_0)=empty_set|in(esk7_0,esk6_0)),inference(sr,[status(thm)],[510,406,theory(equality)])).
% cnf(516,negated_conjecture,(in(esk7_0,esk6_0)),inference(csr,[status(thm)],[515,75])).
% cnf(519,negated_conjecture,(disjoint(esk5_0,esk6_0)|~in(esk7_0,esk5_0)),inference(spm,[status(thm)],[67,516,theory(equality)])).
% cnf(530,negated_conjecture,(disjoint(esk5_0,esk6_0)|$false),inference(rw,[status(thm)],[519,467,theory(equality)])).
% cnf(531,negated_conjecture,(disjoint(esk5_0,esk6_0)),inference(cn,[status(thm)],[530,theory(equality)])).
% cnf(532,negated_conjecture,(set_intersection2(esk5_0,esk6_0)=empty_set),inference(spm,[status(thm)],[55,531,theory(equality)])).
% cnf(544,negated_conjecture,(~in(X1,esk6_0)|~in(X1,esk5_0)),inference(spm,[status(thm)],[295,532,theory(equality)])).
% cnf(567,negated_conjecture,(~in(esk7_0,esk5_0)),inference(spm,[status(thm)],[544,516,theory(equality)])).
% cnf(582,negated_conjecture,($false),inference(rw,[status(thm)],[567,467,theory(equality)])).
% cnf(583,negated_conjecture,($false),inference(cn,[status(thm)],[582,theory(equality)])).
% cnf(584,negated_conjecture,($false),583,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 199
% # ...of these trivial                : 3
% # ...subsumed                        : 78
% # ...remaining for further processing: 118
% # Other redundant clauses eliminated : 9
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 3
% # Backward-rewritten                 : 29
% # Generated clauses                  : 356
% # ...of the previous two non-trivial : 260
% # Contextual simplify-reflections    : 48
% # Paramodulations                    : 334
% # Factorizations                     : 4
% # Equation resolutions               : 15
% # Current number of processed clauses: 63
% #    Positive orientable unit clauses: 11
% #    Positive unorientable unit clauses: 1
% #    Negative unit clauses           : 7
% #    Non-unit-clauses                : 44
% # Current number of unprocessed clauses: 69
% # ...number of literals in the above : 195
% # Clause-clause subsumption calls (NU) : 757
% # Rec. Clause-clause subsumption calls : 677
% # Unit Clause-clause subsumption calls : 37
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 11
% # Indexed BW rewrite successes       : 11
% # Backwards rewriting index:    41 leaves,   1.66+/-1.540 terms/leaf
% # Paramod-from index:           17 leaves,   1.53+/-1.460 terms/leaf
% # Paramod-into index:           39 leaves,   1.59+/-1.409 terms/leaf
% # -------------------------------------------------
% # User time              : 0.026 s
% # System time            : 0.003 s
% # Total time             : 0.029 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.11 CPU 0.20 WC
% FINAL PrfWatch: 0.11 CPU 0.20 WC
% SZS output end Solution for /tmp/SystemOnTPTP14412/SEU119+1.tptp
% 
%------------------------------------------------------------------------------