TSTP Solution File: SEU118+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : SEU118+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 12:38:29 EDT 2022

% Result   : Theorem 0.18s 0.46s
% Output   : CNFRefutation 0.18s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :    7
% Syntax   : Number of formulae    :   50 (  16 unt;   0 def)
%            Number of atoms       :  142 (  13 equ)
%            Maximal formula atoms :   26 (   2 avg)
%            Number of connectives :  161 (  69   ~;  60   |;  16   &)
%                                         (   9 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    8 (   5 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   65 (   1 sgn  44   !;   4   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(d5_finsub_1,axiom,
    ! [A,B] :
      ( preboolean(B)
     => ( B = finite_subsets(A)
      <=> ! [C] :
            ( in(C,B)
          <=> ( subset(C,A)
              & finite(C) ) ) ) ) ).

fof(dt_k5_finsub_1,axiom,
    ! [A] : preboolean(finite_subsets(A)) ).

fof(t13_finset_1,axiom,
    ! [A,B] :
      ( ( subset(A,B)
        & finite(B) )
     => finite(A) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t34_finsub_1,conjecture,
    ! [A,B] :
      ( element(B,powerset(A))
     => ( finite(A)
       => element(B,finite_subsets(A)) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(subgoal_0,plain,
    ! [A,B] :
      ( ( element(B,powerset(A))
        & finite(A) )
     => element(B,finite_subsets(A)) ),
    inference(strip,[],[t34_finsub_1]) ).

fof(negate_0_0,plain,
    ~ ! [A,B] :
        ( ( element(B,powerset(A))
          & finite(A) )
       => element(B,finite_subsets(A)) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ! [A,B] :
      ( ~ in(A,B)
      | element(A,B) ),
    inference(canonicalize,[],[t1_subset]) ).

fof(normalize_0_1,plain,
    ! [A,B] :
      ( ~ in(A,B)
      | element(A,B) ),
    inference(specialize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ? [A,B] :
      ( ~ element(B,finite_subsets(A))
      & element(B,powerset(A))
      & finite(A) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_3,plain,
    ( ~ element(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4))
    & element(skolemFOFtoCNF_B_5,powerset(skolemFOFtoCNF_A_4))
    & finite(skolemFOFtoCNF_A_4) ),
    inference(skolemize,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    element(skolemFOFtoCNF_B_5,powerset(skolemFOFtoCNF_A_4)),
    inference(conjunct,[],[normalize_0_3]) ).

fof(normalize_0_5,plain,
    ! [A,B] :
      ( ~ element(A,powerset(B))
    <=> ~ subset(A,B) ),
    inference(canonicalize,[],[t3_subset]) ).

fof(normalize_0_6,plain,
    ! [A,B] :
      ( ~ element(A,powerset(B))
    <=> ~ subset(A,B) ),
    inference(specialize,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ! [A,B] :
      ( ( ~ element(A,powerset(B))
        | subset(A,B) )
      & ( ~ subset(A,B)
        | element(A,powerset(B)) ) ),
    inference(clausify,[],[normalize_0_6]) ).

fof(normalize_0_8,plain,
    ! [A,B] :
      ( ~ element(A,powerset(B))
      | subset(A,B) ),
    inference(conjunct,[],[normalize_0_7]) ).

fof(normalize_0_9,plain,
    ! [A,B] :
      ( ~ preboolean(B)
      | ( B != finite_subsets(A)
      <=> ? [C] :
            ( ~ in(C,B)
          <=> ( finite(C)
              & subset(C,A) ) ) ) ),
    inference(canonicalize,[],[d5_finsub_1]) ).

fof(normalize_0_10,plain,
    ! [A,B] :
      ( ~ preboolean(B)
      | ( B != finite_subsets(A)
      <=> ? [C] :
            ( ~ in(C,B)
          <=> ( finite(C)
              & subset(C,A) ) ) ) ),
    inference(specialize,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    ! [A,B,C] :
      ( ( B != finite_subsets(A)
        | ~ in(C,B)
        | ~ preboolean(B)
        | finite(C) )
      & ( B != finite_subsets(A)
        | ~ in(C,B)
        | ~ preboolean(B)
        | subset(C,A) )
      & ( ~ preboolean(B)
        | B = finite_subsets(A)
        | finite(skolemFOFtoCNF_C(A,B))
        | in(skolemFOFtoCNF_C(A,B),B) )
      & ( ~ preboolean(B)
        | B = finite_subsets(A)
        | in(skolemFOFtoCNF_C(A,B),B)
        | subset(skolemFOFtoCNF_C(A,B),A) )
      & ( B != finite_subsets(A)
        | ~ finite(C)
        | ~ preboolean(B)
        | ~ subset(C,A)
        | in(C,B) )
      & ( ~ finite(skolemFOFtoCNF_C(A,B))
        | ~ in(skolemFOFtoCNF_C(A,B),B)
        | ~ preboolean(B)
        | ~ subset(skolemFOFtoCNF_C(A,B),A)
        | B = finite_subsets(A) ) ),
    inference(clausify,[],[normalize_0_10]) ).

fof(normalize_0_12,plain,
    ! [A,B,C] :
      ( B != finite_subsets(A)
      | ~ finite(C)
      | ~ preboolean(B)
      | ~ subset(C,A)
      | in(C,B) ),
    inference(conjunct,[],[normalize_0_11]) ).

fof(normalize_0_13,plain,
    ! [A] : preboolean(finite_subsets(A)),
    inference(canonicalize,[],[dt_k5_finsub_1]) ).

fof(normalize_0_14,plain,
    ! [A] : preboolean(finite_subsets(A)),
    inference(specialize,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    ! [A,B] :
      ( ~ finite(B)
      | ~ subset(A,B)
      | finite(A) ),
    inference(canonicalize,[],[t13_finset_1]) ).

fof(normalize_0_16,plain,
    ! [A,B] :
      ( ~ finite(B)
      | ~ subset(A,B)
      | finite(A) ),
    inference(specialize,[],[normalize_0_15]) ).

fof(normalize_0_17,plain,
    finite(skolemFOFtoCNF_A_4),
    inference(conjunct,[],[normalize_0_3]) ).

fof(normalize_0_18,plain,
    ~ element(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)),
    inference(conjunct,[],[normalize_0_3]) ).

cnf(refute_0_0,plain,
    ( ~ in(A,B)
    | element(A,B) ),
    inference(canonicalize,[],[normalize_0_1]) ).

cnf(refute_0_1,plain,
    ( ~ in(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4))
    | element(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)) ),
    inference(subst,[],[refute_0_0:[bind(A,$fot(skolemFOFtoCNF_B_5)),bind(B,$fot(finite_subsets(skolemFOFtoCNF_A_4)))]]) ).

cnf(refute_0_2,plain,
    element(skolemFOFtoCNF_B_5,powerset(skolemFOFtoCNF_A_4)),
    inference(canonicalize,[],[normalize_0_4]) ).

cnf(refute_0_3,plain,
    ( ~ element(A,powerset(B))
    | subset(A,B) ),
    inference(canonicalize,[],[normalize_0_8]) ).

cnf(refute_0_4,plain,
    ( ~ element(skolemFOFtoCNF_B_5,powerset(skolemFOFtoCNF_A_4))
    | subset(skolemFOFtoCNF_B_5,skolemFOFtoCNF_A_4) ),
    inference(subst,[],[refute_0_3:[bind(A,$fot(skolemFOFtoCNF_B_5)),bind(B,$fot(skolemFOFtoCNF_A_4))]]) ).

cnf(refute_0_5,plain,
    subset(skolemFOFtoCNF_B_5,skolemFOFtoCNF_A_4),
    inference(resolve,[$cnf( element(skolemFOFtoCNF_B_5,powerset(skolemFOFtoCNF_A_4)) )],[refute_0_2,refute_0_4]) ).

cnf(refute_0_6,plain,
    ( B != finite_subsets(A)
    | ~ finite(C)
    | ~ preboolean(B)
    | ~ subset(C,A)
    | in(C,B) ),
    inference(canonicalize,[],[normalize_0_12]) ).

cnf(refute_0_7,plain,
    ( finite_subsets(A) != finite_subsets(A)
    | ~ finite(C)
    | ~ preboolean(finite_subsets(A))
    | ~ subset(C,A)
    | in(C,finite_subsets(A)) ),
    inference(subst,[],[refute_0_6:[bind(B,$fot(finite_subsets(A)))]]) ).

cnf(refute_0_8,plain,
    finite_subsets(A) = finite_subsets(A),
    introduced(tautology,[refl,[$fot(finite_subsets(A))]]) ).

cnf(refute_0_9,plain,
    ( ~ finite(C)
    | ~ preboolean(finite_subsets(A))
    | ~ subset(C,A)
    | in(C,finite_subsets(A)) ),
    inference(resolve,[$cnf( $equal(finite_subsets(A),finite_subsets(A)) )],[refute_0_8,refute_0_7]) ).

cnf(refute_0_10,plain,
    preboolean(finite_subsets(A)),
    inference(canonicalize,[],[normalize_0_14]) ).

cnf(refute_0_11,plain,
    ( ~ finite(C)
    | ~ subset(C,A)
    | in(C,finite_subsets(A)) ),
    inference(resolve,[$cnf( preboolean(finite_subsets(A)) )],[refute_0_10,refute_0_9]) ).

cnf(refute_0_12,plain,
    ( ~ finite(skolemFOFtoCNF_B_5)
    | ~ subset(skolemFOFtoCNF_B_5,skolemFOFtoCNF_A_4)
    | in(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)) ),
    inference(subst,[],[refute_0_11:[bind(A,$fot(skolemFOFtoCNF_A_4)),bind(C,$fot(skolemFOFtoCNF_B_5))]]) ).

cnf(refute_0_13,plain,
    ( ~ finite(skolemFOFtoCNF_B_5)
    | in(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)) ),
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_B_5,skolemFOFtoCNF_A_4) )],[refute_0_5,refute_0_12]) ).

cnf(refute_0_14,plain,
    ( ~ finite(B)
    | ~ subset(A,B)
    | finite(A) ),
    inference(canonicalize,[],[normalize_0_16]) ).

cnf(refute_0_15,plain,
    ( ~ finite(skolemFOFtoCNF_A_4)
    | ~ subset(skolemFOFtoCNF_B_5,skolemFOFtoCNF_A_4)
    | finite(skolemFOFtoCNF_B_5) ),
    inference(subst,[],[refute_0_14:[bind(A,$fot(skolemFOFtoCNF_B_5)),bind(B,$fot(skolemFOFtoCNF_A_4))]]) ).

cnf(refute_0_16,plain,
    ( ~ finite(skolemFOFtoCNF_A_4)
    | finite(skolemFOFtoCNF_B_5) ),
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_B_5,skolemFOFtoCNF_A_4) )],[refute_0_5,refute_0_15]) ).

cnf(refute_0_17,plain,
    finite(skolemFOFtoCNF_A_4),
    inference(canonicalize,[],[normalize_0_17]) ).

cnf(refute_0_18,plain,
    finite(skolemFOFtoCNF_B_5),
    inference(resolve,[$cnf( finite(skolemFOFtoCNF_A_4) )],[refute_0_17,refute_0_16]) ).

cnf(refute_0_19,plain,
    in(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)),
    inference(resolve,[$cnf( finite(skolemFOFtoCNF_B_5) )],[refute_0_18,refute_0_13]) ).

cnf(refute_0_20,plain,
    element(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)),
    inference(resolve,[$cnf( in(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)) )],[refute_0_19,refute_0_1]) ).

cnf(refute_0_21,plain,
    ~ element(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)),
    inference(canonicalize,[],[normalize_0_18]) ).

cnf(refute_0_22,plain,
    $false,
    inference(resolve,[$cnf( element(skolemFOFtoCNF_B_5,finite_subsets(skolemFOFtoCNF_A_4)) )],[refute_0_20,refute_0_21]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SEU118+1 : TPTP v8.1.0. Released v3.2.0.
% 0.07/0.13  % Command  : metis --show proof --show saturation %s
% 0.13/0.34  % Computer : n026.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sat Jun 18 22:37:40 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.18/0.46  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.18/0.46  
% 0.18/0.46  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 0.18/0.47  
%------------------------------------------------------------------------------