TSTP Solution File: SEU114+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU114+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:46:40 EDT 2022

% Result   : Theorem 4.96s 1.93s
% Output   : Proof 7.10s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SEU114+1 : TPTP v8.1.0. Released v3.2.0.
% 0.07/0.13  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.34  % Computer : n019.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Mon Jun 20 07:27:09 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.63/0.63          ____       _                          
% 0.63/0.63    ___  / __ \_____(_)___  ________  __________
% 0.63/0.63   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.63/0.63  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.63/0.63  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.63/0.63  
% 0.63/0.63  A Theorem Prover for First-Order Logic
% 0.63/0.64  (ePrincess v.1.0)
% 0.63/0.64  
% 0.63/0.64  (c) Philipp Rümmer, 2009-2015
% 0.63/0.64  (c) Peter Backeman, 2014-2015
% 0.63/0.64  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.63/0.64  Free software under GNU Lesser General Public License (LGPL).
% 0.63/0.64  Bug reports to peter@backeman.se
% 0.63/0.64  
% 0.63/0.64  For more information, visit http://user.uu.se/~petba168/breu/
% 0.63/0.64  
% 0.63/0.64  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.63/0.68  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.67/1.02  Prover 0: Preprocessing ...
% 2.30/1.25  Prover 0: Warning: ignoring some quantifiers
% 2.45/1.28  Prover 0: Constructing countermodel ...
% 4.96/1.93  Prover 0: proved (1250ms)
% 4.96/1.93  
% 4.96/1.93  No countermodel exists, formula is valid
% 4.96/1.93  % SZS status Theorem for theBenchmark
% 4.96/1.94  
% 4.96/1.94  Generating proof ... Warning: ignoring some quantifiers
% 6.94/2.31  found it (size 37)
% 6.94/2.31  
% 6.94/2.31  % SZS output start Proof for theBenchmark
% 6.94/2.31  Assumed formulas after preprocessing and simplification: 
% 6.94/2.31  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] : ( ~ (v2 = v1) & finite_subsets(v0) = v1 & powerset(v0) = v2 & cap_closed(v5) & diff_closed(v5) & cup_closed(v5) & preboolean(v5) & finite(v6) & finite(v0) & empty(v4) & empty(empty_set) &  ~ empty(v6) &  ~ empty(v5) &  ~ empty(v3) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (powerset(v9) = v10) |  ~ element(v8, v10) |  ~ empty(v9) |  ~ in(v7, v8)) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (powerset(v9) = v10) |  ~ element(v8, v10) |  ~ in(v7, v8) | element(v7, v9)) &  ! [v7] :  ! [v8] :  ! [v9] : (v9 = v8 |  ~ (finite_subsets(v7) = v9) |  ~ preboolean(v8) |  ? [v10] : (( ~ subset(v10, v7) |  ~ finite(v10) |  ~ in(v10, v8)) & (in(v10, v8) | (subset(v10, v7) & finite(v10))))) &  ! [v7] :  ! [v8] :  ! [v9] : (v8 = v7 |  ~ (finite_subsets(v9) = v8) |  ~ (finite_subsets(v9) = v7)) &  ! [v7] :  ! [v8] :  ! [v9] : (v8 = v7 |  ~ (powerset(v9) = v8) |  ~ (powerset(v9) = v7)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (finite_subsets(v7) = v9) |  ~ element(v8, v9) | finite(v8)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (finite_subsets(v7) = v8) |  ~ subset(v9, v7) |  ~ preboolean(v8) |  ~ finite(v9) | in(v9, v8)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (finite_subsets(v7) = v8) |  ~ preboolean(v8) |  ~ in(v9, v8) | subset(v9, v7)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (finite_subsets(v7) = v8) |  ~ preboolean(v8) |  ~ in(v9, v8) | finite(v9)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (powerset(v8) = v9) |  ~ subset(v7, v8) | element(v7, v9)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (powerset(v8) = v9) |  ~ element(v7, v9) | subset(v7, v8)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (powerset(v7) = v8) |  ~ element(v9, v8) |  ~ finite(v7) | finite(v9)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ subset(v7, v8) |  ~ in(v9, v7) | in(v9, v8)) &  ! [v7] :  ! [v8] : (v8 = v7 |  ~ subset(v8, v7) |  ~ subset(v7, v8)) &  ! [v7] :  ! [v8] : (v8 = v7 |  ~ empty(v8) |  ~ empty(v7)) &  ! [v7] :  ! [v8] : ( ~ (finite_subsets(v7) = v8) |  ~ empty(v8)) &  ! [v7] :  ! [v8] : ( ~ (finite_subsets(v7) = v8) | diff_closed(v8)) &  ! [v7] :  ! [v8] : ( ~ (finite_subsets(v7) = v8) | cup_closed(v8)) &  ! [v7] :  ! [v8] : ( ~ (finite_subsets(v7) = v8) | preboolean(v8)) &  ! [v7] :  ! [v8] : ( ~ (finite_subsets(v7) = v8) |  ? [v9] : (powerset(v7) = v9 & subset(v8, v9))) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) |  ~ empty(v8)) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) | diff_closed(v8)) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) | cup_closed(v8)) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) | preboolean(v8)) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) | empty(v7) |  ? [v9] : (element(v9, v8) & finite(v9) &  ~ empty(v9))) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) | empty(v7) |  ? [v9] : (element(v9, v8) &  ~ empty(v9))) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) |  ? [v9] : (finite_subsets(v7) = v9 & subset(v9, v8))) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) |  ? [v9] : (natural(v9) & ordinal(v9) & epsilon_connected(v9) & epsilon_transitive(v9) & one_to_one(v9) & function(v9) & relation(v9) & element(v9, v8) & finite(v9) & empty(v9))) &  ! [v7] :  ! [v8] : ( ~ (powerset(v7) = v8) |  ? [v9] : (element(v9, v8) & empty(v9))) &  ! [v7] :  ! [v8] : ( ~ subset(v7, v8) |  ~ finite(v8) | finite(v7)) &  ! [v7] :  ! [v8] : ( ~ element(v7, v8) | empty(v8) | in(v7, v8)) &  ! [v7] :  ! [v8] : ( ~ empty(v8) |  ~ in(v7, v8)) &  ! [v7] :  ! [v8] : ( ~ in(v8, v7) |  ~ in(v7, v8)) &  ! [v7] :  ! [v8] : ( ~ in(v7, v8) | element(v7, v8)) &  ! [v7] : (v7 = empty_set |  ~ empty(v7)) &  ! [v7] : ( ~ diff_closed(v7) |  ~ cup_closed(v7) | preboolean(v7)) &  ! [v7] : ( ~ preboolean(v7) | diff_closed(v7)) &  ! [v7] : ( ~ preboolean(v7) | cup_closed(v7)) &  ! [v7] : ( ~ empty(v7) | finite(v7)) &  ? [v7] :  ? [v8] : (subset(v7, v8) |  ? [v9] : (in(v9, v7) &  ~ in(v9, v8))) &  ? [v7] :  ? [v8] : element(v8, v7) &  ? [v7] : subset(v7, v7))
% 7.10/2.36  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6 yields:
% 7.10/2.36  | (1)  ~ (all_0_4_4 = all_0_5_5) & finite_subsets(all_0_6_6) = all_0_5_5 & powerset(all_0_6_6) = all_0_4_4 & cap_closed(all_0_1_1) & diff_closed(all_0_1_1) & cup_closed(all_0_1_1) & preboolean(all_0_1_1) & finite(all_0_0_0) & finite(all_0_6_6) & empty(all_0_2_2) & empty(empty_set) &  ~ empty(all_0_0_0) &  ~ empty(all_0_1_1) &  ~ empty(all_0_3_3) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ empty(v2) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = v1 |  ~ (finite_subsets(v0) = v2) |  ~ preboolean(v1) |  ? [v3] : (( ~ subset(v3, v0) |  ~ finite(v3) |  ~ in(v3, v1)) & (in(v3, v1) | (subset(v3, v0) & finite(v3))))) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (finite_subsets(v2) = v1) |  ~ (finite_subsets(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v2) |  ~ element(v1, v2) | finite(v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v1) |  ~ subset(v2, v0) |  ~ preboolean(v1) |  ~ finite(v2) | in(v2, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v1) |  ~ preboolean(v1) |  ~ in(v2, v1) | subset(v2, v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v1) |  ~ preboolean(v1) |  ~ in(v2, v1) | finite(v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v0) = v1) |  ~ element(v2, v1) |  ~ finite(v0) | finite(v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ subset(v0, v1) |  ~ in(v2, v0) | in(v2, v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ subset(v1, v0) |  ~ subset(v0, v1)) &  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0)) &  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) | diff_closed(v1)) &  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) | cup_closed(v1)) &  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) | preboolean(v1)) &  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) |  ? [v2] : (powerset(v0) = v2 & subset(v1, v2))) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ~ empty(v1)) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | diff_closed(v1)) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | cup_closed(v1)) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | preboolean(v1)) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | empty(v0) |  ? [v2] : (element(v2, v1) & finite(v2) &  ~ empty(v2))) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | empty(v0) |  ? [v2] : (element(v2, v1) &  ~ empty(v2))) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (finite_subsets(v0) = v2 & subset(v2, v1))) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (natural(v2) & ordinal(v2) & epsilon_connected(v2) & epsilon_transitive(v2) & one_to_one(v2) & function(v2) & relation(v2) & element(v2, v1) & finite(v2) & empty(v2))) &  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (element(v2, v1) & empty(v2))) &  ! [v0] :  ! [v1] : ( ~ subset(v0, v1) |  ~ finite(v1) | finite(v0)) &  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1)) &  ! [v0] : (v0 = empty_set |  ~ empty(v0)) &  ! [v0] : ( ~ diff_closed(v0) |  ~ cup_closed(v0) | preboolean(v0)) &  ! [v0] : ( ~ preboolean(v0) | diff_closed(v0)) &  ! [v0] : ( ~ preboolean(v0) | cup_closed(v0)) &  ! [v0] : ( ~ empty(v0) | finite(v0)) &  ? [v0] :  ? [v1] : (subset(v0, v1) |  ? [v2] : (in(v2, v0) &  ~ in(v2, v1))) &  ? [v0] :  ? [v1] : element(v1, v0) &  ? [v0] : subset(v0, v0)
% 7.10/2.37  |
% 7.10/2.37  | Applying alpha-rule on (1) yields:
% 7.10/2.37  | (2) cup_closed(all_0_1_1)
% 7.10/2.37  | (3)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ subset(v0, v1) |  ~ in(v2, v0) | in(v2, v1))
% 7.10/2.37  | (4) empty(all_0_2_2)
% 7.10/2.37  | (5)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = v1 |  ~ (finite_subsets(v0) = v2) |  ~ preboolean(v1) |  ? [v3] : (( ~ subset(v3, v0) |  ~ finite(v3) |  ~ in(v3, v1)) & (in(v3, v1) | (subset(v3, v0) & finite(v3)))))
% 7.10/2.37  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ in(v0, v1) | element(v0, v2))
% 7.10/2.37  | (7)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v1) |  ~ preboolean(v1) |  ~ in(v2, v1) | finite(v2))
% 7.10/2.37  | (8)  ! [v0] :  ! [v1] : ( ~ subset(v0, v1) |  ~ finite(v1) | finite(v0))
% 7.10/2.37  | (9)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | diff_closed(v1))
% 7.10/2.37  | (10)  ! [v0] : ( ~ empty(v0) | finite(v0))
% 7.10/2.37  | (11)  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) | diff_closed(v1))
% 7.10/2.37  | (12) finite(all_0_0_0)
% 7.10/2.37  | (13)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (natural(v2) & ordinal(v2) & epsilon_connected(v2) & epsilon_transitive(v2) & one_to_one(v2) & function(v2) & relation(v2) & element(v2, v1) & finite(v2) & empty(v2)))
% 7.10/2.37  | (14)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ~ empty(v1))
% 7.10/2.37  | (15) cap_closed(all_0_1_1)
% 7.10/2.37  | (16)  ! [v0] : ( ~ preboolean(v0) | cup_closed(v0))
% 7.10/2.37  | (17)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (element(v2, v1) & empty(v2)))
% 7.10/2.38  | (18)  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) | preboolean(v1))
% 7.10/2.38  | (19)  ! [v0] :  ! [v1] : ( ~ in(v0, v1) | element(v0, v1))
% 7.10/2.38  | (20)  ! [v0] : (v0 = empty_set |  ~ empty(v0))
% 7.10/2.38  | (21)  ! [v0] :  ! [v1] : ( ~ element(v0, v1) | empty(v1) | in(v0, v1))
% 7.10/2.38  | (22)  ! [v0] :  ! [v1] : ( ~ empty(v1) |  ~ in(v0, v1))
% 7.10/2.38  | (23)  ? [v0] :  ? [v1] : element(v1, v0)
% 7.10/2.38  | (24) preboolean(all_0_1_1)
% 7.10/2.38  | (25)  ~ (all_0_4_4 = all_0_5_5)
% 7.10/2.38  | (26)  ! [v0] :  ! [v1] : ( ~ in(v1, v0) |  ~ in(v0, v1))
% 7.10/2.38  | (27)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (powerset(v2) = v1) |  ~ (powerset(v2) = v0))
% 7.10/2.38  | (28)  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) |  ~ empty(v1))
% 7.10/2.38  | (29)  ? [v0] :  ? [v1] : (subset(v0, v1) |  ? [v2] : (in(v2, v0) &  ~ in(v2, v1)))
% 7.10/2.38  | (30)  ~ empty(all_0_3_3)
% 7.10/2.38  | (31)  ! [v0] : ( ~ preboolean(v0) | diff_closed(v0))
% 7.10/2.38  | (32) finite_subsets(all_0_6_6) = all_0_5_5
% 7.10/2.38  | (33)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ empty(v1) |  ~ empty(v0))
% 7.10/2.38  | (34)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v1) |  ~ preboolean(v1) |  ~ in(v2, v1) | subset(v2, v0))
% 7.10/2.38  | (35) empty(empty_set)
% 7.10/2.38  | (36)  ~ empty(all_0_0_0)
% 7.10/2.38  | (37)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (powerset(v2) = v3) |  ~ element(v1, v3) |  ~ empty(v2) |  ~ in(v0, v1))
% 7.10/2.38  | (38)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (finite_subsets(v2) = v1) |  ~ (finite_subsets(v2) = v0))
% 7.10/2.38  | (39)  ? [v0] : subset(v0, v0)
% 7.10/2.38  | (40)  ! [v0] :  ! [v1] : (v1 = v0 |  ~ subset(v1, v0) |  ~ subset(v0, v1))
% 7.10/2.38  | (41)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v2) |  ~ element(v1, v2) | finite(v1))
% 7.10/2.38  | (42)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | empty(v0) |  ? [v2] : (element(v2, v1) &  ~ empty(v2)))
% 7.10/2.38  | (43)  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) |  ? [v2] : (powerset(v0) = v2 & subset(v1, v2)))
% 7.10/2.38  | (44)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | cup_closed(v1))
% 7.10/2.38  | (45)  ! [v0] : ( ~ diff_closed(v0) |  ~ cup_closed(v0) | preboolean(v0))
% 7.10/2.38  | (46) powerset(all_0_6_6) = all_0_4_4
% 7.10/2.38  | (47)  ! [v0] :  ! [v1] : ( ~ (finite_subsets(v0) = v1) | cup_closed(v1))
% 7.10/2.38  | (48)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (finite_subsets(v0) = v1) |  ~ subset(v2, v0) |  ~ preboolean(v1) |  ~ finite(v2) | in(v2, v1))
% 7.10/2.38  | (49)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v0) = v1) |  ~ element(v2, v1) |  ~ finite(v0) | finite(v2))
% 7.10/2.38  | (50)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | empty(v0) |  ? [v2] : (element(v2, v1) & finite(v2) &  ~ empty(v2)))
% 7.10/2.39  | (51)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) | preboolean(v1))
% 7.10/2.39  | (52)  ! [v0] :  ! [v1] : ( ~ (powerset(v0) = v1) |  ? [v2] : (finite_subsets(v0) = v2 & subset(v2, v1)))
% 7.10/2.39  | (53)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ element(v0, v2) | subset(v0, v1))
% 7.10/2.39  | (54)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (powerset(v1) = v2) |  ~ subset(v0, v1) | element(v0, v2))
% 7.10/2.39  | (55) finite(all_0_6_6)
% 7.10/2.39  | (56) diff_closed(all_0_1_1)
% 7.10/2.39  | (57)  ~ empty(all_0_1_1)
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (18) with all_0_5_5, all_0_6_6 and discharging atoms finite_subsets(all_0_6_6) = all_0_5_5, yields:
% 7.10/2.39  | (58) preboolean(all_0_5_5)
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (43) with all_0_5_5, all_0_6_6 and discharging atoms finite_subsets(all_0_6_6) = all_0_5_5, yields:
% 7.10/2.39  | (59)  ? [v0] : (powerset(all_0_6_6) = v0 & subset(all_0_5_5, v0))
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (51) with all_0_4_4, all_0_6_6 and discharging atoms powerset(all_0_6_6) = all_0_4_4, yields:
% 7.10/2.39  | (60) preboolean(all_0_4_4)
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (52) with all_0_4_4, all_0_6_6 and discharging atoms powerset(all_0_6_6) = all_0_4_4, yields:
% 7.10/2.39  | (61)  ? [v0] : (finite_subsets(all_0_6_6) = v0 & subset(v0, all_0_4_4))
% 7.10/2.39  |
% 7.10/2.39  | Instantiating (61) with all_20_0_13 yields:
% 7.10/2.39  | (62) finite_subsets(all_0_6_6) = all_20_0_13 & subset(all_20_0_13, all_0_4_4)
% 7.10/2.39  |
% 7.10/2.39  | Applying alpha-rule on (62) yields:
% 7.10/2.39  | (63) finite_subsets(all_0_6_6) = all_20_0_13
% 7.10/2.39  | (64) subset(all_20_0_13, all_0_4_4)
% 7.10/2.39  |
% 7.10/2.39  | Instantiating (59) with all_22_0_14 yields:
% 7.10/2.39  | (65) powerset(all_0_6_6) = all_22_0_14 & subset(all_0_5_5, all_22_0_14)
% 7.10/2.39  |
% 7.10/2.39  | Applying alpha-rule on (65) yields:
% 7.10/2.39  | (66) powerset(all_0_6_6) = all_22_0_14
% 7.10/2.39  | (67) subset(all_0_5_5, all_22_0_14)
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (38) with all_0_6_6, all_20_0_13, all_0_5_5 and discharging atoms finite_subsets(all_0_6_6) = all_20_0_13, finite_subsets(all_0_6_6) = all_0_5_5, yields:
% 7.10/2.39  | (68) all_20_0_13 = all_0_5_5
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (27) with all_0_6_6, all_22_0_14, all_0_4_4 and discharging atoms powerset(all_0_6_6) = all_22_0_14, powerset(all_0_6_6) = all_0_4_4, yields:
% 7.10/2.39  | (69) all_22_0_14 = all_0_4_4
% 7.10/2.39  |
% 7.10/2.39  | From (68) and (63) follows:
% 7.10/2.39  | (32) finite_subsets(all_0_6_6) = all_0_5_5
% 7.10/2.39  |
% 7.10/2.39  | From (69) and (66) follows:
% 7.10/2.39  | (46) powerset(all_0_6_6) = all_0_4_4
% 7.10/2.39  |
% 7.10/2.39  | From (69) and (67) follows:
% 7.10/2.39  | (72) subset(all_0_5_5, all_0_4_4)
% 7.10/2.39  |
% 7.10/2.39  | Instantiating formula (5) with all_0_5_5, all_0_4_4, all_0_6_6 and discharging atoms finite_subsets(all_0_6_6) = all_0_5_5, preboolean(all_0_4_4), yields:
% 7.10/2.39  | (73) all_0_4_4 = all_0_5_5 |  ? [v0] : (( ~ subset(v0, all_0_6_6) |  ~ finite(v0) |  ~ in(v0, all_0_4_4)) & (in(v0, all_0_4_4) | (subset(v0, all_0_6_6) & finite(v0))))
% 7.10/2.39  |
% 7.10/2.40  +-Applying beta-rule and splitting (73), into two cases.
% 7.10/2.40  |-Branch one:
% 7.10/2.40  | (74) all_0_4_4 = all_0_5_5
% 7.10/2.40  |
% 7.10/2.40  	| Equations (74) can reduce 25 to:
% 7.10/2.40  	| (75) $false
% 7.10/2.40  	|
% 7.10/2.40  	|-The branch is then unsatisfiable
% 7.10/2.40  |-Branch two:
% 7.10/2.40  | (25)  ~ (all_0_4_4 = all_0_5_5)
% 7.10/2.40  | (77)  ? [v0] : (( ~ subset(v0, all_0_6_6) |  ~ finite(v0) |  ~ in(v0, all_0_4_4)) & (in(v0, all_0_4_4) | (subset(v0, all_0_6_6) & finite(v0))))
% 7.10/2.40  |
% 7.10/2.40  	| Instantiating (77) with all_40_0_16 yields:
% 7.10/2.40  	| (78) ( ~ subset(all_40_0_16, all_0_6_6) |  ~ finite(all_40_0_16) |  ~ in(all_40_0_16, all_0_4_4)) & (in(all_40_0_16, all_0_4_4) | (subset(all_40_0_16, all_0_6_6) & finite(all_40_0_16)))
% 7.10/2.40  	|
% 7.10/2.40  	| Applying alpha-rule on (78) yields:
% 7.10/2.40  	| (79)  ~ subset(all_40_0_16, all_0_6_6) |  ~ finite(all_40_0_16) |  ~ in(all_40_0_16, all_0_4_4)
% 7.10/2.40  	| (80) in(all_40_0_16, all_0_4_4) | (subset(all_40_0_16, all_0_6_6) & finite(all_40_0_16))
% 7.10/2.40  	|
% 7.10/2.40  	+-Applying beta-rule and splitting (79), into two cases.
% 7.10/2.40  	|-Branch one:
% 7.10/2.40  	| (81)  ~ in(all_40_0_16, all_0_4_4)
% 7.10/2.40  	|
% 7.10/2.40  		+-Applying beta-rule and splitting (80), into two cases.
% 7.10/2.40  		|-Branch one:
% 7.10/2.40  		| (82) in(all_40_0_16, all_0_4_4)
% 7.10/2.40  		|
% 7.10/2.40  			| Using (82) and (81) yields:
% 7.10/2.40  			| (83) $false
% 7.10/2.40  			|
% 7.10/2.40  			|-The branch is then unsatisfiable
% 7.10/2.40  		|-Branch two:
% 7.10/2.40  		| (81)  ~ in(all_40_0_16, all_0_4_4)
% 7.10/2.40  		| (85) subset(all_40_0_16, all_0_6_6) & finite(all_40_0_16)
% 7.10/2.40  		|
% 7.10/2.40  			| Applying alpha-rule on (85) yields:
% 7.10/2.40  			| (86) subset(all_40_0_16, all_0_6_6)
% 7.10/2.40  			| (87) finite(all_40_0_16)
% 7.10/2.40  			|
% 7.10/2.40  			| Instantiating formula (48) with all_40_0_16, all_0_5_5, all_0_6_6 and discharging atoms finite_subsets(all_0_6_6) = all_0_5_5, subset(all_40_0_16, all_0_6_6), preboolean(all_0_5_5), finite(all_40_0_16), yields:
% 7.10/2.40  			| (88) in(all_40_0_16, all_0_5_5)
% 7.10/2.40  			|
% 7.10/2.40  			| Instantiating formula (3) with all_40_0_16, all_0_4_4, all_0_5_5 and discharging atoms subset(all_0_5_5, all_0_4_4), in(all_40_0_16, all_0_5_5),  ~ in(all_40_0_16, all_0_4_4), yields:
% 7.10/2.40  			| (83) $false
% 7.10/2.40  			|
% 7.10/2.40  			|-The branch is then unsatisfiable
% 7.10/2.40  	|-Branch two:
% 7.10/2.40  	| (82) in(all_40_0_16, all_0_4_4)
% 7.10/2.40  	| (91)  ~ subset(all_40_0_16, all_0_6_6) |  ~ finite(all_40_0_16)
% 7.10/2.40  	|
% 7.10/2.40  		| Instantiating formula (19) with all_0_4_4, all_40_0_16 and discharging atoms in(all_40_0_16, all_0_4_4), yields:
% 7.10/2.40  		| (92) element(all_40_0_16, all_0_4_4)
% 7.10/2.40  		|
% 7.10/2.40  		| Instantiating formula (49) with all_40_0_16, all_0_4_4, all_0_6_6 and discharging atoms powerset(all_0_6_6) = all_0_4_4, element(all_40_0_16, all_0_4_4), finite(all_0_6_6), yields:
% 7.10/2.40  		| (87) finite(all_40_0_16)
% 7.10/2.40  		|
% 7.10/2.40  		| Instantiating formula (53) with all_0_4_4, all_0_6_6, all_40_0_16 and discharging atoms powerset(all_0_6_6) = all_0_4_4, element(all_40_0_16, all_0_4_4), yields:
% 7.10/2.40  		| (86) subset(all_40_0_16, all_0_6_6)
% 7.10/2.40  		|
% 7.10/2.40  		+-Applying beta-rule and splitting (91), into two cases.
% 7.10/2.40  		|-Branch one:
% 7.10/2.40  		| (95)  ~ subset(all_40_0_16, all_0_6_6)
% 7.10/2.40  		|
% 7.10/2.40  			| Using (86) and (95) yields:
% 7.10/2.40  			| (83) $false
% 7.10/2.40  			|
% 7.10/2.40  			|-The branch is then unsatisfiable
% 7.10/2.40  		|-Branch two:
% 7.10/2.40  		| (86) subset(all_40_0_16, all_0_6_6)
% 7.10/2.40  		| (98)  ~ finite(all_40_0_16)
% 7.10/2.40  		|
% 7.10/2.40  			| Using (87) and (98) yields:
% 7.10/2.40  			| (83) $false
% 7.10/2.40  			|
% 7.10/2.40  			|-The branch is then unsatisfiable
% 7.10/2.40  % SZS output end Proof for theBenchmark
% 7.10/2.40  
% 7.10/2.40  1759ms
%------------------------------------------------------------------------------