TSTP Solution File: SEU097+1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SEU097+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:29:15 EDT 2023

% Result   : Theorem 0.22s 0.61s
% Output   : Proof 0.22s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : SEU097+1 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.14  % Command    : do_cvc5 %s %d
% 0.15/0.35  % Computer : n005.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit   : 300
% 0.15/0.35  % WCLimit    : 300
% 0.15/0.35  % DateTime   : Wed Aug 23 13:10:38 EDT 2023
% 0.15/0.35  % CPUTime    : 
% 0.22/0.50  %----Proving TF0_NAR, FOF, or CNF
% 0.22/0.61  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.JOWCr9CXiK/cvc5---1.0.5_15752.p...
% 0.22/0.61  ------- get file name : TPTP file name is SEU097+1
% 0.22/0.61  ------- cvc5-fof : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_15752.smt2...
% 0.22/0.61  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 0.22/0.61  % SZS status Theorem for SEU097+1
% 0.22/0.61  % SZS output start Proof for SEU097+1
% 0.22/0.61  (
% 0.22/0.61  (let ((_let_1 (not (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.finite A) (tptp.finite B)) (tptp.finite (tptp.symmetric_difference A B))))))) (let ((_let_2 (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.finite A) (tptp.finite B)) (tptp.finite (tptp.set_union2 A B)))))) (let ((_let_3 (tptp.relation tptp.empty_set))) (let ((_let_4 (tptp.empty tptp.empty_set))) (let ((_let_5 (tptp.relation_empty_yielding tptp.empty_set))) (let ((_let_6 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.finite A) (tptp.finite (tptp.set_difference A B)))))) (let ((_let_7 (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.symmetric_difference A B) (tptp.set_union2 (tptp.set_difference A B) (tptp.set_difference B A)))))) (let ((_let_8 (tptp.symmetric_difference SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24))) (let ((_let_9 (tptp.finite _let_8))) (let ((_let_10 (tptp.set_difference SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23))) (let ((_let_11 (tptp.set_difference SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24))) (let ((_let_12 (tptp.set_union2 _let_11 _let_10))) (let ((_let_13 (= _let_8 _let_12))) (let ((_let_14 (tptp.finite _let_12))) (let ((_let_15 (tptp.finite SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24))) (let ((_let_16 (not _let_15))) (let ((_let_17 (tptp.finite SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23))) (let ((_let_18 (not _let_17))) (let ((_let_19 (or _let_18 _let_16 _let_9))) (let ((_let_20 (not _let_9))) (let ((_let_21 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.finite A)) (not (tptp.finite B)) (tptp.finite (tptp.symmetric_difference A B)))))) (let ((_let_22 (not _let_19))) (let ((_let_23 (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_24 (or))) (let ((_let_25 (not _let_21))) (let ((_let_26 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_23) :args (_let_25))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_25) _let_21))) (REFL :args (_let_22)) :args _let_24)) _let_23 :args (_let_22 true _let_21)))) (let ((_let_27 (_let_7))) (let ((_let_28 (ASSUME :args _let_27))) (let ((_let_29 (tptp.finite _let_10))) (let ((_let_30 (not _let_29))) (let ((_let_31 (tptp.finite _let_11))) (let ((_let_32 (not _let_31))) (let ((_let_33 (or _let_32 _let_30 _let_14))) (let ((_let_34 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.finite A)) (not (tptp.finite B)) (tptp.finite (tptp.set_union2 A B)))))) (let ((_let_35 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_36 (or _let_16 _let_29))) (let ((_let_37 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.finite A)) (tptp.finite (tptp.set_difference A B)))))) (let ((_let_38 (EQ_RESOLVE (ASSUME :args (_let_6)) (MACRO_SR_EQ_INTRO :args (_let_6 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_39 (_let_37))) (let ((_let_40 ((tptp.set_difference A B)))) (let ((_let_41 (REFL :args (_let_19)))) (let ((_let_42 (or _let_18 _let_31))) (let ((_let_43 (ASSUME :args (_let_14)))) (let ((_let_44 (ASSUME :args (_let_13)))) (let ((_let_45 (ASSUME :args (_let_20)))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (NOT_AND (MACRO_SR_PRED_TRANSFORM (SCOPE (AND_INTRO _let_43 _let_44 _let_45) :args (_let_20 _let_13 _let_14)) (SCOPE (MACRO_SR_PRED_ELIM (TRANS (SYMM (FALSE_INTRO _let_45)) (CONG (SYMM (SYMM _let_44)) :args (APPLY_UF tptp.finite)) (TRUE_INTRO _let_43))) :args (_let_14 _let_13 _let_20)) :args ((not (and _let_20 _let_13 _let_14)) SB_LITERAL))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_20) _let_9))) (REFL :args ((not _let_13))) (REFL :args ((not _let_14))) :args _let_24)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_33)) :args ((or _let_32 _let_30 _let_14 (not _let_33)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_42)) :args ((or _let_18 _let_31 (not _let_42)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_19 0)) (CONG _let_41 (MACRO_SR_PRED_INTRO :args ((= (not _let_18) _let_17))) :args _let_24)) :args ((or _let_17 _let_19))) _let_26 :args (_let_17 true _let_19)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_38 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_40)) :args _let_39)) _let_38 :args (_let_42 false _let_37)) :args (_let_31 false _let_17 false _let_42)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_36)) :args ((or _let_16 _let_29 (not _let_36)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_19 1)) (CONG _let_41 (MACRO_SR_PRED_INTRO :args ((= (not _let_16) _let_15))) :args _let_24)) :args ((or _let_15 _let_19))) _let_26 :args (_let_15 true _let_19)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_38 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_40)) :args _let_39)) _let_38 :args (_let_36 false _let_37)) :args (_let_29 false _let_15 false _let_36)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_35 :args (_let_11 _let_10 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.set_union2 A B)))) :args (_let_34))) _let_35 :args (_let_33 false _let_34)) :args (_let_14 false _let_31 false _let_29 false _let_33)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_28 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_23 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_24 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.symmetric_difference A B)))) :args _let_27)) _let_28 :args (_let_13 false _let_7)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_19 2)) _let_26 :args (_let_20 true _let_19)) :args (false false _let_14 false _let_13 true _let_9)) :args ((forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (not (tptp.in B A)))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (forall ((B $$unsorted)) (=> (tptp.element B A) (and (tptp.epsilon_transitive B) (tptp.epsilon_connected B) (tptp.ordinal B)))))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.finite A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.function A))) (forall ((A $$unsorted)) (=> (tptp.ordinal A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.ordinal A))) (=> (and (tptp.empty A) _let_1) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) _let_1 (tptp.natural A))))) (forall ((A $$unsorted)) (=> (tptp.finite A) (forall ((B $$unsorted)) (=> (tptp.element B (tptp.powerset A)) (tptp.finite B))))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.function A))) (let ((_let_2 (tptp.relation A))) (=> (and _let_2 (tptp.empty A) _let_1) (and _let_2 _let_1 (tptp.one_to_one A)))))) (forall ((A $$unsorted)) (=> (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A)) (tptp.ordinal A))) (forall ((A $$unsorted)) (=> (tptp.empty A) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A)))) (forall ((A $$unsorted)) (let ((_let_1 (tptp.ordinal A))) (=> (tptp.element A tptp.positive_rationals) (=> _let_1 (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) _let_1 (tptp.natural A)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A B) (tptp.set_union2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.symmetric_difference A B) (tptp.symmetric_difference B A))) _let_7 (forall ((A $$unsorted)) (exists ((B $$unsorted)) (tptp.element B A))) _let_6 (and _let_4 _let_3 _let_5) (forall ((A $$unsorted)) (not (tptp.empty (tptp.powerset A)))) _let_4 (and _let_3 _let_5 (tptp.function tptp.empty_set) (tptp.one_to_one tptp.empty_set) _let_4 (tptp.epsilon_transitive tptp.empty_set) (tptp.epsilon_connected tptp.empty_set) (tptp.ordinal tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_union2 A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 A B))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.relation A) (tptp.relation B)) (tptp.relation (tptp.set_difference A B)))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 B A))))) (and _let_4 _let_3) (not (tptp.empty tptp.positive_rationals)) _let_2 (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.set_union2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (and (tptp.finite A) (tptp.finite B)) (tptp.finite (tptp.set_union2 A B)))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A) (tptp.natural A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.finite A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.function_yielding A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A) (tptp.being_limit_ordinal A))) (exists ((A $$unsorted)) (and (tptp.empty A) (tptp.relation A))) (forall ((A $$unsorted)) (=> (not (tptp.empty A)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (not (tptp.empty B)))))) (exists ((A $$unsorted)) (tptp.empty A)) (exists ((A $$unsorted)) (and (tptp.element A tptp.positive_rationals) (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (tptp.empty B) (tptp.relation B) (tptp.function B) (tptp.one_to_one B) (tptp.epsilon_transitive B) (tptp.epsilon_connected B) (tptp.ordinal B) (tptp.natural B) (tptp.finite B)))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.empty A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A) (tptp.empty A) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.transfinite_sequence A) (tptp.ordinal_yielding A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.relation A))) (forall ((A $$unsorted)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (tptp.empty B)))) (exists ((A $$unsorted)) (not (tptp.empty A))) (exists ((A $$unsorted)) (and (tptp.element A tptp.positive_rationals) (tptp.empty A) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A) (tptp.natural A))) (forall ((A $$unsorted)) (=> (not (tptp.empty A)) (exists ((B $$unsorted)) (and (tptp.element B (tptp.powerset A)) (not (tptp.empty B)) (tptp.finite B))))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.one_to_one A))) (exists ((A $$unsorted)) (and (not (tptp.empty A)) (tptp.epsilon_transitive A) (tptp.epsilon_connected A) (tptp.ordinal A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_empty_yielding A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_empty_yielding A) (tptp.function A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.function A) (tptp.transfinite_sequence A))) (exists ((A $$unsorted)) (and (tptp.relation A) (tptp.relation_non_empty A) (tptp.function A))) (forall ((A $$unsorted) (B $$unsorted)) (tptp.subset A A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.finite A) (tptp.finite (tptp.set_difference A B)))) (forall ((A $$unsorted)) (= (tptp.set_union2 A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.in A B) (tptp.element A B))) _let_1 (forall ((A $$unsorted) (B $$unsorted)) (=> (tptp.element A B) (or (tptp.empty B) (tptp.in A B)))) (forall ((A $$unsorted)) (= (tptp.set_difference A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (tptp.element A (tptp.powerset B)) (tptp.subset A B))) (forall ((A $$unsorted)) (= (tptp.set_difference tptp.empty_set A) tptp.empty_set)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (tptp.in A B) (tptp.element B (tptp.powerset C))) (tptp.element A C))) (forall ((A $$unsorted)) (= (tptp.symmetric_difference A tptp.empty_set) A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (not (and (tptp.in A B) (tptp.element B (tptp.powerset C)) (tptp.empty C)))) (forall ((A $$unsorted)) (=> (tptp.empty A) (= A tptp.empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.in A B) (tptp.empty B)))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (tptp.empty A) (not (= A B)) (tptp.empty B)))) true))))))))))))))))))))))))))))))))))))))))))))))))
% 0.22/0.62  )
% 0.22/0.62  % SZS output end Proof for SEU097+1
% 0.22/0.62  % cvc5---1.0.5 exiting
% 0.22/0.62  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------