TSTP Solution File: SEU010+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SEU010+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 17:50:47 EDT 2023

% Result   : Theorem 0.21s 0.52s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : SEU010+1 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.36  % Computer : n028.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 300
% 0.14/0.36  % DateTime : Wed Aug 23 19:49:04 EDT 2023
% 0.14/0.36  % CPUTime  : 
% 0.21/0.52  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.52  
% 0.21/0.52  % SZS status Theorem
% 0.21/0.52  
% 0.21/0.52  % SZS output start Proof
% 0.21/0.52  Take the following subset of the input axioms:
% 0.21/0.52    fof(reflexivity_r1_tarski, axiom, ![A, B]: subset(A, A)).
% 0.21/0.52    fof(t42_funct_1, conjecture, ![A3]: ((relation(A3) & function(A3)) => (relation_composition(identity_relation(relation_dom(A3)), A3)=A3 & relation_composition(A3, identity_relation(relation_rng(A3)))=A3))).
% 0.21/0.52    fof(t77_relat_1, axiom, ![A2, B2]: (relation(B2) => (subset(relation_dom(B2), A2) => relation_composition(identity_relation(A2), B2)=B2))).
% 0.21/0.52    fof(t79_relat_1, axiom, ![B2, A2_2]: (relation(B2) => (subset(relation_rng(B2), A2_2) => relation_composition(B2, identity_relation(A2_2))=B2))).
% 0.21/0.52  
% 0.21/0.52  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.52  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.52  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.52    fresh(y, y, x1...xn) = u
% 0.21/0.52    C => fresh(s, t, x1...xn) = v
% 0.21/0.52  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.52  variables of u and v.
% 0.21/0.52  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.52  input problem has no model of domain size 1).
% 0.21/0.52  
% 0.21/0.52  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.52  
% 0.21/0.52  Axiom 1 (t42_funct_1): relation(a) = true2.
% 0.21/0.52  Axiom 2 (reflexivity_r1_tarski): subset(X, X) = true2.
% 0.21/0.52  Axiom 3 (t79_relat_1): fresh(X, X, Y, Z) = Z.
% 0.21/0.52  Axiom 4 (t77_relat_1): fresh6(X, X, Y, Z) = relation_composition(identity_relation(Y), Z).
% 0.21/0.52  Axiom 5 (t79_relat_1): fresh5(X, X, Y, Z) = relation_composition(Z, identity_relation(Y)).
% 0.21/0.52  Axiom 6 (t77_relat_1): fresh2(X, X, Y, Z) = Z.
% 0.21/0.52  Axiom 7 (t77_relat_1): fresh6(subset(relation_dom(X), Y), true2, Y, X) = fresh2(relation(X), true2, Y, X).
% 0.21/0.52  Axiom 8 (t79_relat_1): fresh5(subset(relation_rng(X), Y), true2, Y, X) = fresh(relation(X), true2, Y, X).
% 0.21/0.52  
% 0.21/0.52  Goal 1 (t42_funct_1_2): tuple3(relation_composition(identity_relation(relation_dom(a)), a), relation_composition(a, identity_relation(relation_rng(a)))) = tuple3(a, a).
% 0.21/0.52  Proof:
% 0.21/0.52    tuple3(relation_composition(identity_relation(relation_dom(a)), a), relation_composition(a, identity_relation(relation_rng(a))))
% 0.21/0.52  = { by axiom 5 (t79_relat_1) R->L }
% 0.21/0.52    tuple3(relation_composition(identity_relation(relation_dom(a)), a), fresh5(true2, true2, relation_rng(a), a))
% 0.21/0.52  = { by axiom 2 (reflexivity_r1_tarski) R->L }
% 0.21/0.52    tuple3(relation_composition(identity_relation(relation_dom(a)), a), fresh5(subset(relation_rng(a), relation_rng(a)), true2, relation_rng(a), a))
% 0.21/0.52  = { by axiom 8 (t79_relat_1) }
% 0.21/0.52    tuple3(relation_composition(identity_relation(relation_dom(a)), a), fresh(relation(a), true2, relation_rng(a), a))
% 0.21/0.52  = { by axiom 1 (t42_funct_1) }
% 0.21/0.52    tuple3(relation_composition(identity_relation(relation_dom(a)), a), fresh(true2, true2, relation_rng(a), a))
% 0.21/0.52  = { by axiom 3 (t79_relat_1) }
% 0.21/0.52    tuple3(relation_composition(identity_relation(relation_dom(a)), a), a)
% 0.21/0.52  = { by axiom 4 (t77_relat_1) R->L }
% 0.21/0.52    tuple3(fresh6(true2, true2, relation_dom(a), a), a)
% 0.21/0.52  = { by axiom 2 (reflexivity_r1_tarski) R->L }
% 0.21/0.52    tuple3(fresh6(subset(relation_dom(a), relation_dom(a)), true2, relation_dom(a), a), a)
% 0.21/0.52  = { by axiom 7 (t77_relat_1) }
% 0.21/0.52    tuple3(fresh2(relation(a), true2, relation_dom(a), a), a)
% 0.21/0.52  = { by axiom 1 (t42_funct_1) }
% 0.21/0.52    tuple3(fresh2(true2, true2, relation_dom(a), a), a)
% 0.21/0.52  = { by axiom 6 (t77_relat_1) }
% 0.21/0.52    tuple3(a, a)
% 0.21/0.52  % SZS output end Proof
% 0.21/0.52  
% 0.21/0.52  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------