TSTP Solution File: SET983+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SET983+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 15:33:53 EDT 2023

% Result   : Theorem 0.20s 0.41s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : SET983+1 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.35  % Computer : n014.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Sat Aug 26 12:43:32 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.20/0.41  Command-line arguments: --set-join --lhs-weight 1 --no-flatten-goal --complete-subsets --goal-heuristic
% 0.20/0.41  
% 0.20/0.41  % SZS status Theorem
% 0.20/0.41  
% 0.20/0.41  % SZS output start Proof
% 0.20/0.41  Take the following subset of the input axioms:
% 0.20/0.41    fof(commutativity_k3_xboole_0, axiom, ![A, B]: set_intersection2(A, B)=set_intersection2(B, A)).
% 0.20/0.41    fof(d3_xboole_0, axiom, ![C, A2, B2]: (C=set_intersection2(A2, B2) <=> ![D]: (in(D, C) <=> (in(D, A2) & in(D, B2))))).
% 0.20/0.41    fof(t123_zfmisc_1, axiom, ![A3, B2, C2, D2]: cartesian_product2(set_intersection2(A3, B2), set_intersection2(C2, D2))=set_intersection2(cartesian_product2(A3, C2), cartesian_product2(B2, D2))).
% 0.20/0.41    fof(t137_zfmisc_1, conjecture, ![E, A3, B2, C2, D2]: ((in(A3, cartesian_product2(B2, C2)) & in(A3, cartesian_product2(D2, E))) => in(A3, cartesian_product2(set_intersection2(B2, D2), set_intersection2(C2, E))))).
% 0.20/0.41  
% 0.20/0.41  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.41  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.41  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.41    fresh(y, y, x1...xn) = u
% 0.20/0.41    C => fresh(s, t, x1...xn) = v
% 0.20/0.41  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.41  variables of u and v.
% 0.20/0.41  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.41  input problem has no model of domain size 1).
% 0.20/0.41  
% 0.20/0.41  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.41  
% 0.20/0.41  Axiom 1 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X).
% 0.20/0.41  Axiom 2 (d3_xboole_0_2): fresh7(X, X, Y, Z) = true2.
% 0.20/0.41  Axiom 3 (t137_zfmisc_1): in(a, cartesian_product2(d, e)) = true2.
% 0.20/0.41  Axiom 4 (t137_zfmisc_1_1): in(a, cartesian_product2(b, c)) = true2.
% 0.20/0.41  Axiom 5 (d3_xboole_0_3): fresh6(X, X, Y, Z, W) = equiv(Y, Z, W).
% 0.20/0.41  Axiom 6 (d3_xboole_0_3): fresh5(X, X, Y, Z, W) = true2.
% 0.20/0.41  Axiom 7 (d3_xboole_0_2): fresh8(X, X, Y, Z, W, V) = in(V, W).
% 0.20/0.41  Axiom 8 (t123_zfmisc_1): cartesian_product2(set_intersection2(X, Y), set_intersection2(Z, W)) = set_intersection2(cartesian_product2(X, Z), cartesian_product2(Y, W)).
% 0.20/0.41  Axiom 9 (d3_xboole_0_3): fresh6(in(X, Y), true2, Z, Y, X) = fresh5(in(X, Z), true2, Z, Y, X).
% 0.20/0.41  Axiom 10 (d3_xboole_0_2): fresh8(equiv(X, Y, Z), true2, X, Y, W, Z) = fresh7(W, set_intersection2(X, Y), W, Z).
% 0.20/0.41  
% 0.20/0.41  Goal 1 (t137_zfmisc_1_2): in(a, cartesian_product2(set_intersection2(b, d), set_intersection2(c, e))) = true2.
% 0.20/0.41  Proof:
% 0.20/0.41    in(a, cartesian_product2(set_intersection2(b, d), set_intersection2(c, e)))
% 0.20/0.41  = { by axiom 1 (commutativity_k3_xboole_0) }
% 0.20/0.41    in(a, cartesian_product2(set_intersection2(d, b), set_intersection2(c, e)))
% 0.20/0.41  = { by axiom 1 (commutativity_k3_xboole_0) }
% 0.20/0.41    in(a, cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)))
% 0.20/0.41  = { by axiom 7 (d3_xboole_0_2) R->L }
% 0.20/0.41    fresh8(true2, true2, cartesian_product2(d, e), cartesian_product2(b, c), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 6 (d3_xboole_0_3) R->L }
% 0.20/0.41    fresh8(fresh5(true2, true2, cartesian_product2(d, e), cartesian_product2(b, c), a), true2, cartesian_product2(d, e), cartesian_product2(b, c), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 3 (t137_zfmisc_1) R->L }
% 0.20/0.41    fresh8(fresh5(in(a, cartesian_product2(d, e)), true2, cartesian_product2(d, e), cartesian_product2(b, c), a), true2, cartesian_product2(d, e), cartesian_product2(b, c), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 9 (d3_xboole_0_3) R->L }
% 0.20/0.41    fresh8(fresh6(in(a, cartesian_product2(b, c)), true2, cartesian_product2(d, e), cartesian_product2(b, c), a), true2, cartesian_product2(d, e), cartesian_product2(b, c), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 4 (t137_zfmisc_1_1) }
% 0.20/0.41    fresh8(fresh6(true2, true2, cartesian_product2(d, e), cartesian_product2(b, c), a), true2, cartesian_product2(d, e), cartesian_product2(b, c), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 5 (d3_xboole_0_3) }
% 0.20/0.41    fresh8(equiv(cartesian_product2(d, e), cartesian_product2(b, c), a), true2, cartesian_product2(d, e), cartesian_product2(b, c), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 10 (d3_xboole_0_2) }
% 0.20/0.41    fresh7(cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), set_intersection2(cartesian_product2(d, e), cartesian_product2(b, c)), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 8 (t123_zfmisc_1) R->L }
% 0.20/0.41    fresh7(cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), cartesian_product2(set_intersection2(d, b), set_intersection2(e, c)), a)
% 0.20/0.41  = { by axiom 2 (d3_xboole_0_2) }
% 0.20/0.41    true2
% 0.20/0.41  % SZS output end Proof
% 0.20/0.41  
% 0.20/0.41  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------