TSTP Solution File: SET974+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET974+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:53:42 EDT 2022

% Result   : Theorem 0.81s 1.16s
% Output   : Refutation 0.81s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SET974+1 : TPTP v8.1.0. Released v3.2.0.
% 0.07/0.12  % Command  : bliksem %s
% 0.12/0.33  % Computer : n015.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % DateTime : Sun Jul 10 15:13:53 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.81/1.16  *** allocated 10000 integers for termspace/termends
% 0.81/1.16  *** allocated 10000 integers for clauses
% 0.81/1.16  *** allocated 10000 integers for justifications
% 0.81/1.16  Bliksem 1.12
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Automatic Strategy Selection
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Clauses:
% 0.81/1.16  
% 0.81/1.16  { ! in( X, Y ), ! in( Y, X ) }.
% 0.81/1.16  { unordered_pair( X, Y ) = unordered_pair( Y, X ) }.
% 0.81/1.16  { set_intersection2( X, Y ) = set_intersection2( Y, X ) }.
% 0.81/1.16  { ordered_pair( X, Y ) = unordered_pair( unordered_pair( X, Y ), singleton
% 0.81/1.16    ( X ) ) }.
% 0.81/1.16  { ! empty( ordered_pair( X, Y ) ) }.
% 0.81/1.16  { set_intersection2( X, X ) = X }.
% 0.81/1.16  { empty( skol1 ) }.
% 0.81/1.16  { ! empty( skol2 ) }.
% 0.81/1.16  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.81/1.16  { ! in( X, set_intersection2( cartesian_product2( Y, Z ), 
% 0.81/1.16    cartesian_product2( T, U ) ) ), in( skol6( W, V0, Z, V1, U ), 
% 0.81/1.16    set_intersection2( Z, U ) ) }.
% 0.81/1.16  { ! in( X, set_intersection2( cartesian_product2( Y, Z ), 
% 0.81/1.16    cartesian_product2( T, U ) ) ), in( skol3( X, Y, Z, T, U ), 
% 0.81/1.16    set_intersection2( Y, T ) ) }.
% 0.81/1.16  { ! in( X, set_intersection2( cartesian_product2( Y, Z ), 
% 0.81/1.16    cartesian_product2( T, U ) ) ), X = ordered_pair( skol3( X, Y, Z, T, U )
% 0.81/1.16    , skol6( X, Y, Z, T, U ) ) }.
% 0.81/1.16  { disjoint( skol4, skol7 ), disjoint( skol8, skol9 ) }.
% 0.81/1.16  { ! disjoint( cartesian_product2( skol4, skol8 ), cartesian_product2( skol7
% 0.81/1.16    , skol9 ) ) }.
% 0.81/1.16  { disjoint( X, Y ), in( skol5( X, Y ), set_intersection2( X, Y ) ) }.
% 0.81/1.16  { ! in( Z, set_intersection2( X, Y ) ), ! disjoint( X, Y ) }.
% 0.81/1.16  
% 0.81/1.16  percentage equality = 0.208333, percentage horn = 0.875000
% 0.81/1.16  This is a problem with some equality
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Options Used:
% 0.81/1.16  
% 0.81/1.16  useres =            1
% 0.81/1.16  useparamod =        1
% 0.81/1.16  useeqrefl =         1
% 0.81/1.16  useeqfact =         1
% 0.81/1.16  usefactor =         1
% 0.81/1.16  usesimpsplitting =  0
% 0.81/1.16  usesimpdemod =      5
% 0.81/1.16  usesimpres =        3
% 0.81/1.16  
% 0.81/1.16  resimpinuse      =  1000
% 0.81/1.16  resimpclauses =     20000
% 0.81/1.16  substype =          eqrewr
% 0.81/1.16  backwardsubs =      1
% 0.81/1.16  selectoldest =      5
% 0.81/1.16  
% 0.81/1.16  litorderings [0] =  split
% 0.81/1.16  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.81/1.16  
% 0.81/1.16  termordering =      kbo
% 0.81/1.16  
% 0.81/1.16  litapriori =        0
% 0.81/1.16  termapriori =       1
% 0.81/1.16  litaposteriori =    0
% 0.81/1.16  termaposteriori =   0
% 0.81/1.16  demodaposteriori =  0
% 0.81/1.16  ordereqreflfact =   0
% 0.81/1.16  
% 0.81/1.16  litselect =         negord
% 0.81/1.16  
% 0.81/1.16  maxweight =         15
% 0.81/1.16  maxdepth =          30000
% 0.81/1.16  maxlength =         115
% 0.81/1.16  maxnrvars =         195
% 0.81/1.16  excuselevel =       1
% 0.81/1.16  increasemaxweight = 1
% 0.81/1.16  
% 0.81/1.16  maxselected =       10000000
% 0.81/1.16  maxnrclauses =      10000000
% 0.81/1.16  
% 0.81/1.16  showgenerated =    0
% 0.81/1.16  showkept =         0
% 0.81/1.16  showselected =     0
% 0.81/1.16  showdeleted =      0
% 0.81/1.16  showresimp =       1
% 0.81/1.16  showstatus =       2000
% 0.81/1.16  
% 0.81/1.16  prologoutput =     0
% 0.81/1.16  nrgoals =          5000000
% 0.81/1.16  totalproof =       1
% 0.81/1.16  
% 0.81/1.16  Symbols occurring in the translation:
% 0.81/1.16  
% 0.81/1.16  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.81/1.16  .  [1, 2]      (w:1, o:26, a:1, s:1, b:0), 
% 0.81/1.16  !  [4, 1]      (w:0, o:19, a:1, s:1, b:0), 
% 0.81/1.16  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.81/1.16  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.81/1.16  in  [37, 2]      (w:1, o:50, a:1, s:1, b:0), 
% 0.81/1.16  unordered_pair  [38, 2]      (w:1, o:51, a:1, s:1, b:0), 
% 0.81/1.16  set_intersection2  [39, 2]      (w:1, o:52, a:1, s:1, b:0), 
% 0.81/1.16  ordered_pair  [40, 2]      (w:1, o:53, a:1, s:1, b:0), 
% 0.81/1.16  singleton  [41, 1]      (w:1, o:24, a:1, s:1, b:0), 
% 0.81/1.16  empty  [42, 1]      (w:1, o:25, a:1, s:1, b:0), 
% 0.81/1.16  disjoint  [43, 2]      (w:1, o:55, a:1, s:1, b:0), 
% 0.81/1.16  cartesian_product2  [47, 2]      (w:1, o:54, a:1, s:1, b:0), 
% 0.81/1.16  skol1  [50, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.81/1.16  skol2  [51, 0]      (w:1, o:14, a:1, s:1, b:1), 
% 0.81/1.16  skol3  [52, 5]      (w:1, o:57, a:1, s:1, b:1), 
% 0.81/1.16  skol4  [53, 0]      (w:1, o:15, a:1, s:1, b:1), 
% 0.81/1.16  skol5  [54, 2]      (w:1, o:56, a:1, s:1, b:1), 
% 0.81/1.16  skol6  [55, 5]      (w:1, o:58, a:1, s:1, b:1), 
% 0.81/1.16  skol7  [56, 0]      (w:1, o:16, a:1, s:1, b:1), 
% 0.81/1.16  skol8  [57, 0]      (w:1, o:17, a:1, s:1, b:1), 
% 0.81/1.16  skol9  [58, 0]      (w:1, o:18, a:1, s:1, b:1).
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Starting Search:
% 0.81/1.16  
% 0.81/1.16  *** allocated 15000 integers for clauses
% 0.81/1.16  *** allocated 22500 integers for clauses
% 0.81/1.16  
% 0.81/1.16  Bliksems!, er is een bewijs:
% 0.81/1.16  % SZS status Theorem
% 0.81/1.16  % SZS output start Refutation
% 0.81/1.16  
% 0.81/1.16  (2) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = set_intersection2( 
% 0.81/1.16    Y, X ) }.
% 0.81/1.16  (8) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.81/1.16  (9) {G0,W19,D4,L2,V8,M2} I { ! in( X, set_intersection2( cartesian_product2
% 0.81/1.16    ( Y, Z ), cartesian_product2( T, U ) ) ), in( skol6( W, V0, Z, V1, U ), 
% 0.81/1.16    set_intersection2( Z, U ) ) }.
% 0.81/1.16  (10) {G0,W19,D4,L2,V5,M2} I { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol3( X
% 0.81/1.16    , Y, Z, T, U ), set_intersection2( Y, T ) ) }.
% 0.81/1.16  (12) {G0,W6,D2,L2,V0,M2} I { disjoint( skol4, skol7 ), disjoint( skol8, 
% 0.81/1.16    skol9 ) }.
% 0.81/1.16  (13) {G0,W7,D3,L1,V0,M1} I { ! disjoint( cartesian_product2( skol4, skol8 )
% 0.81/1.16    , cartesian_product2( skol7, skol9 ) ) }.
% 0.81/1.16  (14) {G0,W10,D3,L2,V2,M2} I { disjoint( X, Y ), in( skol5( X, Y ), 
% 0.81/1.16    set_intersection2( X, Y ) ) }.
% 0.81/1.16  (15) {G0,W8,D3,L2,V3,M2} I { ! in( Z, set_intersection2( X, Y ) ), ! 
% 0.81/1.16    disjoint( X, Y ) }.
% 0.81/1.16  (18) {G1,W6,D2,L2,V0,M2} R(12,8) { disjoint( skol4, skol7 ), disjoint( 
% 0.81/1.16    skol9, skol8 ) }.
% 0.81/1.16  (20) {G1,W7,D3,L1,V0,M1} R(13,8) { ! disjoint( cartesian_product2( skol7, 
% 0.81/1.16    skol9 ), cartesian_product2( skol4, skol8 ) ) }.
% 0.81/1.16  (24) {G2,W8,D3,L2,V1,M2} R(15,18) { ! in( X, set_intersection2( skol4, 
% 0.81/1.16    skol7 ) ), disjoint( skol9, skol8 ) }.
% 0.81/1.16  (32) {G1,W8,D3,L2,V3,M2} R(15,8) { ! in( X, set_intersection2( Y, Z ) ), ! 
% 0.81/1.16    disjoint( Z, Y ) }.
% 0.81/1.16  (38) {G2,W12,D4,L2,V5,M2} R(9,32) { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), ! disjoint( U
% 0.81/1.16    , Z ) }.
% 0.81/1.16  (104) {G1,W10,D3,L2,V2,M2} P(2,14) { disjoint( X, Y ), in( skol5( X, Y ), 
% 0.81/1.16    set_intersection2( Y, X ) ) }.
% 0.81/1.16  (181) {G3,W10,D3,L2,V4,M2} R(38,104) { ! disjoint( X, Y ), disjoint( 
% 0.81/1.16    cartesian_product2( Z, X ), cartesian_product2( T, Y ) ) }.
% 0.81/1.16  (220) {G4,W3,D2,L1,V0,M1} R(181,20) { ! disjoint( skol9, skol8 ) }.
% 0.81/1.16  (240) {G5,W5,D3,L1,V1,M1} R(220,24) { ! in( X, set_intersection2( skol4, 
% 0.81/1.16    skol7 ) ) }.
% 0.81/1.16  (249) {G6,W9,D4,L1,V3,M1} R(240,10) { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( skol4, Y ), cartesian_product2( skol7, Z ) ) ) }.
% 0.81/1.16  (274) {G7,W7,D3,L1,V2,M1} R(249,104) { disjoint( cartesian_product2( skol7
% 0.81/1.16    , X ), cartesian_product2( skol4, Y ) ) }.
% 0.81/1.16  (281) {G8,W0,D0,L0,V0,M0} R(274,20) {  }.
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  % SZS output end Refutation
% 0.81/1.16  found a proof!
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Unprocessed initial clauses:
% 0.81/1.16  
% 0.81/1.16  (283) {G0,W6,D2,L2,V2,M2}  { ! in( X, Y ), ! in( Y, X ) }.
% 0.81/1.16  (284) {G0,W7,D3,L1,V2,M1}  { unordered_pair( X, Y ) = unordered_pair( Y, X
% 0.81/1.16     ) }.
% 0.81/1.16  (285) {G0,W7,D3,L1,V2,M1}  { set_intersection2( X, Y ) = set_intersection2
% 0.81/1.16    ( Y, X ) }.
% 0.81/1.16  (286) {G0,W10,D4,L1,V2,M1}  { ordered_pair( X, Y ) = unordered_pair( 
% 0.81/1.16    unordered_pair( X, Y ), singleton( X ) ) }.
% 0.81/1.16  (287) {G0,W4,D3,L1,V2,M1}  { ! empty( ordered_pair( X, Y ) ) }.
% 0.81/1.16  (288) {G0,W5,D3,L1,V1,M1}  { set_intersection2( X, X ) = X }.
% 0.81/1.16  (289) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.81/1.16  (290) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.81/1.16  (291) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.81/1.16  (292) {G0,W19,D4,L2,V8,M2}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol6( W
% 0.81/1.16    , V0, Z, V1, U ), set_intersection2( Z, U ) ) }.
% 0.81/1.16  (293) {G0,W19,D4,L2,V5,M2}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol3( X
% 0.81/1.16    , Y, Z, T, U ), set_intersection2( Y, T ) ) }.
% 0.81/1.16  (294) {G0,W24,D4,L2,V5,M2}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), X = 
% 0.81/1.16    ordered_pair( skol3( X, Y, Z, T, U ), skol6( X, Y, Z, T, U ) ) }.
% 0.81/1.16  (295) {G0,W6,D2,L2,V0,M2}  { disjoint( skol4, skol7 ), disjoint( skol8, 
% 0.81/1.16    skol9 ) }.
% 0.81/1.16  (296) {G0,W7,D3,L1,V0,M1}  { ! disjoint( cartesian_product2( skol4, skol8 )
% 0.81/1.16    , cartesian_product2( skol7, skol9 ) ) }.
% 0.81/1.16  (297) {G0,W10,D3,L2,V2,M2}  { disjoint( X, Y ), in( skol5( X, Y ), 
% 0.81/1.16    set_intersection2( X, Y ) ) }.
% 0.81/1.16  (298) {G0,W8,D3,L2,V3,M2}  { ! in( Z, set_intersection2( X, Y ) ), ! 
% 0.81/1.16    disjoint( X, Y ) }.
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Total Proof:
% 0.81/1.16  
% 0.81/1.16  subsumption: (2) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = 
% 0.81/1.16    set_intersection2( Y, X ) }.
% 0.81/1.16  parent0: (285) {G0,W7,D3,L1,V2,M1}  { set_intersection2( X, Y ) = 
% 0.81/1.16    set_intersection2( Y, X ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (8) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.81/1.16     ) }.
% 0.81/1.16  parent0: (291) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X )
% 0.81/1.16     }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (9) {G0,W19,D4,L2,V8,M2} I { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol6( W
% 0.81/1.16    , V0, Z, V1, U ), set_intersection2( Z, U ) ) }.
% 0.81/1.16  parent0: (292) {G0,W19,D4,L2,V8,M2}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol6( W
% 0.81/1.16    , V0, Z, V1, U ), set_intersection2( Z, U ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16     Z := Z
% 0.81/1.16     T := T
% 0.81/1.16     U := U
% 0.81/1.16     W := W
% 0.81/1.16     V0 := V0
% 0.81/1.16     V1 := V1
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (10) {G0,W19,D4,L2,V5,M2} I { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol3( X
% 0.81/1.16    , Y, Z, T, U ), set_intersection2( Y, T ) ) }.
% 0.81/1.16  parent0: (293) {G0,W19,D4,L2,V5,M2}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol3( X
% 0.81/1.16    , Y, Z, T, U ), set_intersection2( Y, T ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16     Z := Z
% 0.81/1.16     T := T
% 0.81/1.16     U := U
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (12) {G0,W6,D2,L2,V0,M2} I { disjoint( skol4, skol7 ), 
% 0.81/1.16    disjoint( skol8, skol9 ) }.
% 0.81/1.16  parent0: (295) {G0,W6,D2,L2,V0,M2}  { disjoint( skol4, skol7 ), disjoint( 
% 0.81/1.16    skol8, skol9 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (13) {G0,W7,D3,L1,V0,M1} I { ! disjoint( cartesian_product2( 
% 0.81/1.16    skol4, skol8 ), cartesian_product2( skol7, skol9 ) ) }.
% 0.81/1.16  parent0: (296) {G0,W7,D3,L1,V0,M1}  { ! disjoint( cartesian_product2( skol4
% 0.81/1.16    , skol8 ), cartesian_product2( skol7, skol9 ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (14) {G0,W10,D3,L2,V2,M2} I { disjoint( X, Y ), in( skol5( X, 
% 0.81/1.16    Y ), set_intersection2( X, Y ) ) }.
% 0.81/1.16  parent0: (297) {G0,W10,D3,L2,V2,M2}  { disjoint( X, Y ), in( skol5( X, Y )
% 0.81/1.16    , set_intersection2( X, Y ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (15) {G0,W8,D3,L2,V3,M2} I { ! in( Z, set_intersection2( X, Y
% 0.81/1.16     ) ), ! disjoint( X, Y ) }.
% 0.81/1.16  parent0: (298) {G0,W8,D3,L2,V3,M2}  { ! in( Z, set_intersection2( X, Y ) )
% 0.81/1.16    , ! disjoint( X, Y ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16     Z := Z
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (326) {G1,W6,D2,L2,V0,M2}  { disjoint( skol9, skol8 ), disjoint
% 0.81/1.16    ( skol4, skol7 ) }.
% 0.81/1.16  parent0[0]: (8) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.81/1.16     ) }.
% 0.81/1.16  parent1[1]: (12) {G0,W6,D2,L2,V0,M2} I { disjoint( skol4, skol7 ), disjoint
% 0.81/1.16    ( skol8, skol9 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := skol8
% 0.81/1.16     Y := skol9
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (18) {G1,W6,D2,L2,V0,M2} R(12,8) { disjoint( skol4, skol7 ), 
% 0.81/1.16    disjoint( skol9, skol8 ) }.
% 0.81/1.16  parent0: (326) {G1,W6,D2,L2,V0,M2}  { disjoint( skol9, skol8 ), disjoint( 
% 0.81/1.16    skol4, skol7 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 1
% 0.81/1.16     1 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (327) {G1,W7,D3,L1,V0,M1}  { ! disjoint( cartesian_product2( 
% 0.81/1.16    skol7, skol9 ), cartesian_product2( skol4, skol8 ) ) }.
% 0.81/1.16  parent0[0]: (13) {G0,W7,D3,L1,V0,M1} I { ! disjoint( cartesian_product2( 
% 0.81/1.16    skol4, skol8 ), cartesian_product2( skol7, skol9 ) ) }.
% 0.81/1.16  parent1[1]: (8) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.81/1.16     ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := cartesian_product2( skol7, skol9 )
% 0.81/1.16     Y := cartesian_product2( skol4, skol8 )
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (20) {G1,W7,D3,L1,V0,M1} R(13,8) { ! disjoint( 
% 0.81/1.16    cartesian_product2( skol7, skol9 ), cartesian_product2( skol4, skol8 ) )
% 0.81/1.16     }.
% 0.81/1.16  parent0: (327) {G1,W7,D3,L1,V0,M1}  { ! disjoint( cartesian_product2( skol7
% 0.81/1.16    , skol9 ), cartesian_product2( skol4, skol8 ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (328) {G1,W8,D3,L2,V1,M2}  { ! in( X, set_intersection2( skol4
% 0.81/1.16    , skol7 ) ), disjoint( skol9, skol8 ) }.
% 0.81/1.16  parent0[1]: (15) {G0,W8,D3,L2,V3,M2} I { ! in( Z, set_intersection2( X, Y )
% 0.81/1.16     ), ! disjoint( X, Y ) }.
% 0.81/1.16  parent1[0]: (18) {G1,W6,D2,L2,V0,M2} R(12,8) { disjoint( skol4, skol7 ), 
% 0.81/1.16    disjoint( skol9, skol8 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := skol4
% 0.81/1.16     Y := skol7
% 0.81/1.16     Z := X
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (24) {G2,W8,D3,L2,V1,M2} R(15,18) { ! in( X, set_intersection2
% 0.81/1.16    ( skol4, skol7 ) ), disjoint( skol9, skol8 ) }.
% 0.81/1.16  parent0: (328) {G1,W8,D3,L2,V1,M2}  { ! in( X, set_intersection2( skol4, 
% 0.81/1.16    skol7 ) ), disjoint( skol9, skol8 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (330) {G1,W8,D3,L2,V3,M2}  { ! in( X, set_intersection2( Y, Z )
% 0.81/1.16     ), ! disjoint( Z, Y ) }.
% 0.81/1.16  parent0[1]: (15) {G0,W8,D3,L2,V3,M2} I { ! in( Z, set_intersection2( X, Y )
% 0.81/1.16     ), ! disjoint( X, Y ) }.
% 0.81/1.16  parent1[1]: (8) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.81/1.16     ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := Y
% 0.81/1.16     Y := Z
% 0.81/1.16     Z := X
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := Z
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (32) {G1,W8,D3,L2,V3,M2} R(15,8) { ! in( X, set_intersection2
% 0.81/1.16    ( Y, Z ) ), ! disjoint( Z, Y ) }.
% 0.81/1.16  parent0: (330) {G1,W8,D3,L2,V3,M2}  { ! in( X, set_intersection2( Y, Z ) )
% 0.81/1.16    , ! disjoint( Z, Y ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16     Z := Z
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (331) {G1,W12,D4,L2,V5,M2}  { ! disjoint( U, Z ), ! in( W, 
% 0.81/1.16    set_intersection2( cartesian_product2( V0, Z ), cartesian_product2( V1, U
% 0.81/1.16     ) ) ) }.
% 0.81/1.16  parent0[0]: (32) {G1,W8,D3,L2,V3,M2} R(15,8) { ! in( X, set_intersection2( 
% 0.81/1.16    Y, Z ) ), ! disjoint( Z, Y ) }.
% 0.81/1.16  parent1[1]: (9) {G0,W19,D4,L2,V8,M2} I { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol6( W
% 0.81/1.16    , V0, Z, V1, U ), set_intersection2( Z, U ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := skol6( X, Y, Z, T, U )
% 0.81/1.16     Y := Z
% 0.81/1.16     Z := U
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := W
% 0.81/1.16     Y := V0
% 0.81/1.16     Z := Z
% 0.81/1.16     T := V1
% 0.81/1.16     U := U
% 0.81/1.16     W := X
% 0.81/1.16     V0 := Y
% 0.81/1.16     V1 := T
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (38) {G2,W12,D4,L2,V5,M2} R(9,32) { ! in( X, set_intersection2
% 0.81/1.16    ( cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), ! disjoint
% 0.81/1.16    ( U, Z ) }.
% 0.81/1.16  parent0: (331) {G1,W12,D4,L2,V5,M2}  { ! disjoint( U, Z ), ! in( W, 
% 0.81/1.16    set_intersection2( cartesian_product2( V0, Z ), cartesian_product2( V1, U
% 0.81/1.16     ) ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := W
% 0.81/1.16     Y := V0
% 0.81/1.16     Z := Z
% 0.81/1.16     T := V1
% 0.81/1.16     U := U
% 0.81/1.16     W := X
% 0.81/1.16     V0 := Y
% 0.81/1.16     V1 := T
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 1
% 0.81/1.16     1 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  paramod: (332) {G1,W10,D3,L2,V2,M2}  { in( skol5( X, Y ), set_intersection2
% 0.81/1.16    ( Y, X ) ), disjoint( X, Y ) }.
% 0.81/1.16  parent0[0]: (2) {G0,W7,D3,L1,V2,M1} I { set_intersection2( X, Y ) = 
% 0.81/1.16    set_intersection2( Y, X ) }.
% 0.81/1.16  parent1[1; 4]: (14) {G0,W10,D3,L2,V2,M2} I { disjoint( X, Y ), in( skol5( X
% 0.81/1.16    , Y ), set_intersection2( X, Y ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (104) {G1,W10,D3,L2,V2,M2} P(2,14) { disjoint( X, Y ), in( 
% 0.81/1.16    skol5( X, Y ), set_intersection2( Y, X ) ) }.
% 0.81/1.16  parent0: (332) {G1,W10,D3,L2,V2,M2}  { in( skol5( X, Y ), set_intersection2
% 0.81/1.16    ( Y, X ) ), disjoint( X, Y ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 1
% 0.81/1.16     1 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (334) {G2,W10,D3,L2,V4,M2}  { ! disjoint( Y, T ), disjoint( 
% 0.81/1.16    cartesian_product2( X, Y ), cartesian_product2( Z, T ) ) }.
% 0.81/1.16  parent0[0]: (38) {G2,W12,D4,L2,V5,M2} R(9,32) { ! in( X, set_intersection2
% 0.81/1.16    ( cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), ! disjoint
% 0.81/1.16    ( U, Z ) }.
% 0.81/1.16  parent1[1]: (104) {G1,W10,D3,L2,V2,M2} P(2,14) { disjoint( X, Y ), in( 
% 0.81/1.16    skol5( X, Y ), set_intersection2( Y, X ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := skol5( cartesian_product2( X, Y ), cartesian_product2( Z, T ) )
% 0.81/1.16     Y := Z
% 0.81/1.16     Z := T
% 0.81/1.16     T := X
% 0.81/1.16     U := Y
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := cartesian_product2( X, Y )
% 0.81/1.16     Y := cartesian_product2( Z, T )
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (181) {G3,W10,D3,L2,V4,M2} R(38,104) { ! disjoint( X, Y ), 
% 0.81/1.16    disjoint( cartesian_product2( Z, X ), cartesian_product2( T, Y ) ) }.
% 0.81/1.16  parent0: (334) {G2,W10,D3,L2,V4,M2}  { ! disjoint( Y, T ), disjoint( 
% 0.81/1.16    cartesian_product2( X, Y ), cartesian_product2( Z, T ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := Z
% 0.81/1.16     Y := X
% 0.81/1.16     Z := T
% 0.81/1.16     T := Y
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16     1 ==> 1
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (336) {G2,W3,D2,L1,V0,M1}  { ! disjoint( skol9, skol8 ) }.
% 0.81/1.16  parent0[0]: (20) {G1,W7,D3,L1,V0,M1} R(13,8) { ! disjoint( 
% 0.81/1.16    cartesian_product2( skol7, skol9 ), cartesian_product2( skol4, skol8 ) )
% 0.81/1.16     }.
% 0.81/1.16  parent1[1]: (181) {G3,W10,D3,L2,V4,M2} R(38,104) { ! disjoint( X, Y ), 
% 0.81/1.16    disjoint( cartesian_product2( Z, X ), cartesian_product2( T, Y ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := skol9
% 0.81/1.16     Y := skol8
% 0.81/1.16     Z := skol7
% 0.81/1.16     T := skol4
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (220) {G4,W3,D2,L1,V0,M1} R(181,20) { ! disjoint( skol9, skol8
% 0.81/1.16     ) }.
% 0.81/1.16  parent0: (336) {G2,W3,D2,L1,V0,M1}  { ! disjoint( skol9, skol8 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (337) {G3,W5,D3,L1,V1,M1}  { ! in( X, set_intersection2( skol4
% 0.81/1.16    , skol7 ) ) }.
% 0.81/1.16  parent0[0]: (220) {G4,W3,D2,L1,V0,M1} R(181,20) { ! disjoint( skol9, skol8
% 0.81/1.16     ) }.
% 0.81/1.16  parent1[1]: (24) {G2,W8,D3,L2,V1,M2} R(15,18) { ! in( X, set_intersection2
% 0.81/1.16    ( skol4, skol7 ) ), disjoint( skol9, skol8 ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := X
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (240) {G5,W5,D3,L1,V1,M1} R(220,24) { ! in( X, 
% 0.81/1.16    set_intersection2( skol4, skol7 ) ) }.
% 0.81/1.16  parent0: (337) {G3,W5,D3,L1,V1,M1}  { ! in( X, set_intersection2( skol4, 
% 0.81/1.16    skol7 ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (338) {G1,W9,D4,L1,V3,M1}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( skol4, Y ), cartesian_product2( skol7, Z ) ) ) }.
% 0.81/1.16  parent0[0]: (240) {G5,W5,D3,L1,V1,M1} R(220,24) { ! in( X, 
% 0.81/1.16    set_intersection2( skol4, skol7 ) ) }.
% 0.81/1.16  parent1[1]: (10) {G0,W19,D4,L2,V5,M2} I { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( Y, Z ), cartesian_product2( T, U ) ) ), in( skol3( X
% 0.81/1.16    , Y, Z, T, U ), set_intersection2( Y, T ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := skol3( X, skol4, Y, skol7, Z )
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := X
% 0.81/1.16     Y := skol4
% 0.81/1.16     Z := Y
% 0.81/1.16     T := skol7
% 0.81/1.16     U := Z
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (249) {G6,W9,D4,L1,V3,M1} R(240,10) { ! in( X, 
% 0.81/1.16    set_intersection2( cartesian_product2( skol4, Y ), cartesian_product2( 
% 0.81/1.16    skol7, Z ) ) ) }.
% 0.81/1.16  parent0: (338) {G1,W9,D4,L1,V3,M1}  { ! in( X, set_intersection2( 
% 0.81/1.16    cartesian_product2( skol4, Y ), cartesian_product2( skol7, Z ) ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16     Z := Z
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (339) {G2,W7,D3,L1,V2,M1}  { disjoint( cartesian_product2( 
% 0.81/1.16    skol7, X ), cartesian_product2( skol4, Y ) ) }.
% 0.81/1.16  parent0[0]: (249) {G6,W9,D4,L1,V3,M1} R(240,10) { ! in( X, 
% 0.81/1.16    set_intersection2( cartesian_product2( skol4, Y ), cartesian_product2( 
% 0.81/1.16    skol7, Z ) ) ) }.
% 0.81/1.16  parent1[1]: (104) {G1,W10,D3,L2,V2,M2} P(2,14) { disjoint( X, Y ), in( 
% 0.81/1.16    skol5( X, Y ), set_intersection2( Y, X ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := skol5( cartesian_product2( skol7, X ), cartesian_product2( skol4, Y
% 0.81/1.16     ) )
% 0.81/1.16     Y := Y
% 0.81/1.16     Z := X
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := cartesian_product2( skol7, X )
% 0.81/1.16     Y := cartesian_product2( skol4, Y )
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (274) {G7,W7,D3,L1,V2,M1} R(249,104) { disjoint( 
% 0.81/1.16    cartesian_product2( skol7, X ), cartesian_product2( skol4, Y ) ) }.
% 0.81/1.16  parent0: (339) {G2,W7,D3,L1,V2,M1}  { disjoint( cartesian_product2( skol7, 
% 0.81/1.16    X ), cartesian_product2( skol4, Y ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16     X := X
% 0.81/1.16     Y := Y
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16     0 ==> 0
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  resolution: (340) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.81/1.16  parent0[0]: (20) {G1,W7,D3,L1,V0,M1} R(13,8) { ! disjoint( 
% 0.81/1.16    cartesian_product2( skol7, skol9 ), cartesian_product2( skol4, skol8 ) )
% 0.81/1.16     }.
% 0.81/1.16  parent1[0]: (274) {G7,W7,D3,L1,V2,M1} R(249,104) { disjoint( 
% 0.81/1.16    cartesian_product2( skol7, X ), cartesian_product2( skol4, Y ) ) }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  substitution1:
% 0.81/1.16     X := skol9
% 0.81/1.16     Y := skol8
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  subsumption: (281) {G8,W0,D0,L0,V0,M0} R(274,20) {  }.
% 0.81/1.16  parent0: (340) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.81/1.16  substitution0:
% 0.81/1.16  end
% 0.81/1.16  permutation0:
% 0.81/1.16  end
% 0.81/1.16  
% 0.81/1.16  Proof check complete!
% 0.81/1.16  
% 0.81/1.16  Memory use:
% 0.81/1.16  
% 0.81/1.16  space for terms:        4045
% 0.81/1.16  space for clauses:      18234
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  clauses generated:      1398
% 0.81/1.16  clauses kept:           282
% 0.81/1.16  clauses selected:       93
% 0.81/1.16  clauses deleted:        0
% 0.81/1.16  clauses inuse deleted:  0
% 0.81/1.16  
% 0.81/1.16  subsentry:          2033
% 0.81/1.16  literals s-matched: 1796
% 0.81/1.16  literals matched:   1738
% 0.81/1.16  full subsumption:   223
% 0.81/1.16  
% 0.81/1.16  checksum:           336418918
% 0.81/1.16  
% 0.81/1.16  
% 0.81/1.16  Bliksem ended
%------------------------------------------------------------------------------