TSTP Solution File: SET971+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : SET971+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:14:36 EDT 2022

% Result   : Theorem 1.77s 1.98s
% Output   : Refutation 1.77s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    5
%            Number of leaves      :    7
% Syntax   : Number of clauses     :   15 (  14 unt;   0 nHn;  11 RR)
%            Number of literals    :   16 (  12 equ;   5 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   4 con; 0-2 aty)
%            Number of variables   :   13 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(2,axiom,
    set_intersection2(cartesian_product2(dollar_c6,dollar_c3),cartesian_product2(dollar_c5,dollar_c4)) != cartesian_product2(dollar_c6,dollar_c4),
    file('SET971+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ subset(A,B)
    | set_intersection2(A,B) = A ),
    file('SET971+1.p',unknown),
    [] ).

cnf(4,axiom,
    A = A,
    file('SET971+1.p',unknown),
    [] ).

cnf(5,axiom,
    set_intersection2(A,B) = set_intersection2(B,A),
    file('SET971+1.p',unknown),
    [] ).

cnf(10,axiom,
    cartesian_product2(set_intersection2(A,B),set_intersection2(C,D)) = set_intersection2(cartesian_product2(A,C),cartesian_product2(B,D)),
    file('SET971+1.p',unknown),
    [] ).

cnf(12,plain,
    set_intersection2(cartesian_product2(A,B),cartesian_product2(C,D)) = cartesian_product2(set_intersection2(A,C),set_intersection2(B,D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(13,axiom,
    subset(dollar_c6,dollar_c5),
    file('SET971+1.p',unknown),
    [] ).

cnf(14,axiom,
    subset(dollar_c4,dollar_c3),
    file('SET971+1.p',unknown),
    [] ).

cnf(15,plain,
    cartesian_product2(set_intersection2(dollar_c6,dollar_c5),set_intersection2(dollar_c3,dollar_c4)) != cartesian_product2(dollar_c6,dollar_c4),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[2]),12]),
    [iquote('back_demod,2,demod,12')] ).

cnf(17,plain,
    set_intersection2(dollar_c6,dollar_c5) = dollar_c6,
    inference(hyper,[status(thm)],[13,3]),
    [iquote('hyper,13,3')] ).

cnf(18,plain,
    cartesian_product2(dollar_c6,set_intersection2(dollar_c3,dollar_c4)) != cartesian_product2(dollar_c6,dollar_c4),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[15]),17]),
    [iquote('back_demod,15,demod,17')] ).

cnf(19,plain,
    set_intersection2(dollar_c4,dollar_c3) = dollar_c4,
    inference(hyper,[status(thm)],[14,3]),
    [iquote('hyper,14,3')] ).

cnf(25,plain,
    set_intersection2(dollar_c3,dollar_c4) = dollar_c4,
    inference(para_into,[status(thm),theory(equality)],[19,5]),
    [iquote('para_into,19.1.1,5.1.1')] ).

cnf(26,plain,
    cartesian_product2(dollar_c6,dollar_c4) != cartesian_product2(dollar_c6,dollar_c4),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),25]),
    [iquote('back_demod,18,demod,25')] ).

cnf(27,plain,
    $false,
    inference(binary,[status(thm)],[26,4]),
    [iquote('binary,26.1,4.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET971+1 : TPTP v8.1.0. Released v3.2.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n024.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 10:39:10 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.77/1.98  ----- Otter 3.3f, August 2004 -----
% 1.77/1.98  The process was started by sandbox2 on n024.cluster.edu,
% 1.77/1.98  Wed Jul 27 10:39:10 2022
% 1.77/1.98  The command was "./otter".  The process ID is 24725.
% 1.77/1.98  
% 1.77/1.98  set(prolog_style_variables).
% 1.77/1.98  set(auto).
% 1.77/1.98     dependent: set(auto1).
% 1.77/1.98     dependent: set(process_input).
% 1.77/1.98     dependent: clear(print_kept).
% 1.77/1.98     dependent: clear(print_new_demod).
% 1.77/1.98     dependent: clear(print_back_demod).
% 1.77/1.98     dependent: clear(print_back_sub).
% 1.77/1.98     dependent: set(control_memory).
% 1.77/1.98     dependent: assign(max_mem, 12000).
% 1.77/1.98     dependent: assign(pick_given_ratio, 4).
% 1.77/1.98     dependent: assign(stats_level, 1).
% 1.77/1.98     dependent: assign(max_seconds, 10800).
% 1.77/1.98  clear(print_given).
% 1.77/1.98  
% 1.77/1.98  formula_list(usable).
% 1.77/1.98  all A (A=A).
% 1.77/1.98  all A B (set_intersection2(A,B)=set_intersection2(B,A)).
% 1.77/1.98  all A B (set_intersection2(A,A)=A).
% 1.77/1.98  exists A empty(A).
% 1.77/1.98  exists A (-empty(A)).
% 1.77/1.98  all A B subset(A,A).
% 1.77/1.98  all A B C D (cartesian_product2(set_intersection2(A,B),set_intersection2(C,D))=set_intersection2(cartesian_product2(A,C),cartesian_product2(B,D))).
% 1.77/1.98  -(all A B C D (subset(A,B)&subset(C,D)->set_intersection2(cartesian_product2(A,D),cartesian_product2(B,C))=cartesian_product2(A,C))).
% 1.77/1.98  all A B (subset(A,B)->set_intersection2(A,B)=A).
% 1.77/1.98  end_of_list.
% 1.77/1.98  
% 1.77/1.98  -------> usable clausifies to:
% 1.77/1.98  
% 1.77/1.98  list(usable).
% 1.77/1.98  0 [] A=A.
% 1.77/1.98  0 [] set_intersection2(A,B)=set_intersection2(B,A).
% 1.77/1.98  0 [] set_intersection2(A,A)=A.
% 1.77/1.98  0 [] empty($c1).
% 1.77/1.98  0 [] -empty($c2).
% 1.77/1.98  0 [] subset(A,A).
% 1.77/1.98  0 [] cartesian_product2(set_intersection2(A,B),set_intersection2(C,D))=set_intersection2(cartesian_product2(A,C),cartesian_product2(B,D)).
% 1.77/1.98  0 [] subset($c6,$c5).
% 1.77/1.98  0 [] subset($c4,$c3).
% 1.77/1.98  0 [] set_intersection2(cartesian_product2($c6,$c3),cartesian_product2($c5,$c4))!=cartesian_product2($c6,$c4).
% 1.77/1.98  0 [] -subset(A,B)|set_intersection2(A,B)=A.
% 1.77/1.98  end_of_list.
% 1.77/1.98  
% 1.77/1.98  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.77/1.98  
% 1.77/1.98  This is a Horn set with equality.  The strategy will be
% 1.77/1.98  Knuth-Bendix and hyper_res, with positive clauses in
% 1.77/1.98  sos and nonpositive clauses in usable.
% 1.77/1.98  
% 1.77/1.98     dependent: set(knuth_bendix).
% 1.77/1.98     dependent: set(anl_eq).
% 1.77/1.98     dependent: set(para_from).
% 1.77/1.98     dependent: set(para_into).
% 1.77/1.98     dependent: clear(para_from_right).
% 1.77/1.98     dependent: clear(para_into_right).
% 1.77/1.98     dependent: set(para_from_vars).
% 1.77/1.98     dependent: set(eq_units_both_ways).
% 1.77/1.98     dependent: set(dynamic_demod_all).
% 1.77/1.98     dependent: set(dynamic_demod).
% 1.77/1.98     dependent: set(order_eq).
% 1.77/1.98     dependent: set(back_demod).
% 1.77/1.98     dependent: set(lrpo).
% 1.77/1.98     dependent: set(hyper_res).
% 1.77/1.98     dependent: clear(order_hyper).
% 1.77/1.98  
% 1.77/1.98  ------------> process usable:
% 1.77/1.98  ** KEPT (pick-wt=2): 1 [] -empty($c2).
% 1.77/1.98  ** KEPT (pick-wt=11): 2 [] set_intersection2(cartesian_product2($c6,$c3),cartesian_product2($c5,$c4))!=cartesian_product2($c6,$c4).
% 1.77/1.98  ** KEPT (pick-wt=8): 3 [] -subset(A,B)|set_intersection2(A,B)=A.
% 1.77/1.98  
% 1.77/1.98  ------------> process sos:
% 1.77/1.98  ** KEPT (pick-wt=3): 4 [] A=A.
% 1.77/1.98  ** KEPT (pick-wt=7): 5 [] set_intersection2(A,B)=set_intersection2(B,A).
% 1.77/1.98  ** KEPT (pick-wt=5): 6 [] set_intersection2(A,A)=A.
% 1.77/1.98  ---> New Demodulator: 7 [new_demod,6] set_intersection2(A,A)=A.
% 1.77/1.98  ** KEPT (pick-wt=2): 8 [] empty($c1).
% 1.77/1.98  ** KEPT (pick-wt=3): 9 [] subset(A,A).
% 1.77/1.98  ** KEPT (pick-wt=15): 11 [copy,10,flip.1] set_intersection2(cartesian_product2(A,B),cartesian_product2(C,D))=cartesian_product2(set_intersection2(A,C),set_intersection2(B,D)).
% 1.77/1.98  ---> New Demodulator: 12 [new_demod,11] set_intersection2(cartesian_product2(A,B),cartesian_product2(C,D))=cartesian_product2(set_intersection2(A,C),set_intersection2(B,D)).
% 1.77/1.98  ** KEPT (pick-wt=3): 13 [] subset($c6,$c5).
% 1.77/1.98  ** KEPT (pick-wt=3): 14 [] subset($c4,$c3).
% 1.77/1.98    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] A=A.
% 1.77/1.98    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] set_intersection2(A,B)=set_intersection2(B,A).
% 1.77/1.98  >>>> Starting back demodulation with 7.
% 1.77/1.98  >>>> Starting back demodulation with 12.
% 1.77/1.98      >> back demodulating 2 with 12.
% 1.77/1.98  
% 1.77/1.98  ======= end of input processing =======
% 1.77/1.98  
% 1.77/1.98  =========== start of search ===========
% 1.77/1.98  
% 1.77/1.98  -------- PROOF -------- 
% 1.77/1.98  
% 1.77/1.98  ----> UNIT CONFLICT at   0.00 sec ----> 27 [binary,26.1,4.1] $F.
% 1.77/1.98  
% 1.77/1.98  Length of proof is 7.  Level of proof is 4.
% 1.77/1.98  
% 1.77/1.98  ---------------- PROOF ----------------
% 1.77/1.98  % SZS status Theorem
% 1.77/1.98  % SZS output start Refutation
% See solution above
% 1.77/1.98  ------------ end of proof -------------
% 1.77/1.98  
% 1.77/1.98  
% 1.77/1.98  Search stopped by max_proofs option.
% 1.77/1.98  
% 1.77/1.98  
% 1.77/1.98  Search stopped by max_proofs option.
% 1.77/1.98  
% 1.77/1.98  ============ end of search ============
% 1.77/1.98  
% 1.77/1.98  -------------- statistics -------------
% 1.77/1.98  clauses given                  9
% 1.77/1.98  clauses generated             22
% 1.77/1.98  clauses kept                  19
% 1.77/1.98  clauses forward subsumed      19
% 1.77/1.98  clauses back subsumed          0
% 1.77/1.98  Kbytes malloced              976
% 1.77/1.98  
% 1.77/1.98  ----------- times (seconds) -----------
% 1.77/1.98  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.77/1.98  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.77/1.98  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.77/1.98  
% 1.77/1.98  That finishes the proof of the theorem.
% 1.77/1.98  
% 1.77/1.98  Process 24725 finished Wed Jul 27 10:39:11 2022
% 1.77/1.98  Otter interrupted
% 1.77/1.98  PROOF FOUND
%------------------------------------------------------------------------------