TSTP Solution File: SET937+1 by E-SAT---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E-SAT---3.1
% Problem  : SET937+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n001.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 19:24:25 EDT 2023

% Result   : Theorem 5.20s 1.12s
% Output   : CNFRefutation 5.20s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   14
% Syntax   : Number of formulae    :   96 (  41 unt;   0 def)
%            Number of atoms       :  239 (  75 equ)
%            Maximal formula atoms :   20 (   2 avg)
%            Number of connectives :  235 (  92   ~; 104   |;  23   &)
%                                         (  12 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   4 avg)
%            Maximal term depth    :    6 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :   13 (  13 usr;   3 con; 0-3 aty)
%            Number of variables   :  204 (  21 sgn;  93   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(d7_xboole_0,axiom,
    ! [X1,X2] :
      ( disjoint(X1,X2)
    <=> set_intersection2(X1,X2) = empty_set ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',d7_xboole_0) ).

fof(t79_xboole_1,axiom,
    ! [X1,X2] : disjoint(set_difference(X1,X2),X2),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',t79_xboole_1) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',commutativity_k3_xboole_0) ).

fof(t28_xboole_1,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
     => set_intersection2(X1,X2) = X1 ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',t28_xboole_1) ).

fof(t36_xboole_1,axiom,
    ! [X1,X2] : subset(set_difference(X1,X2),X1),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',t36_xboole_1) ).

fof(t63_xboole_1,axiom,
    ! [X1,X2,X3] :
      ( ( subset(X1,X2)
        & disjoint(X2,X3) )
     => disjoint(X1,X3) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',t63_xboole_1) ).

fof(d3_tarski,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( in(X3,X1)
         => in(X3,X2) ) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',d3_tarski) ).

fof(d2_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_union2(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            | in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',d2_xboole_0) ).

fof(d1_zfmisc_1,axiom,
    ! [X1,X2] :
      ( X2 = powerset(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> subset(X3,X1) ) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',d1_zfmisc_1) ).

fof(t84_zfmisc_1,conjecture,
    ! [X1,X2] : subset(powerset(set_difference(X1,X2)),set_union2(singleton(empty_set),set_difference(powerset(X1),powerset(X2)))),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',t84_zfmisc_1) ).

fof(d1_tarski,axiom,
    ! [X1,X2] :
      ( X2 = singleton(X1)
    <=> ! [X3] :
          ( in(X3,X2)
        <=> X3 = X1 ) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',d1_tarski) ).

fof(t1_xboole_1,axiom,
    ! [X1,X2,X3] :
      ( ( subset(X1,X2)
        & subset(X2,X3) )
     => subset(X1,X3) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',t1_xboole_1) ).

fof(reflexivity_r1_tarski,axiom,
    ! [X1,X2] : subset(X1,X1),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',reflexivity_r1_tarski) ).

fof(d4_xboole_0,axiom,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p',d4_xboole_0) ).

fof(c_0_14,plain,
    ! [X65,X66] :
      ( ( ~ disjoint(X65,X66)
        | set_intersection2(X65,X66) = empty_set )
      & ( set_intersection2(X65,X66) != empty_set
        | disjoint(X65,X66) ) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])]) ).

fof(c_0_15,plain,
    ! [X56,X57] : disjoint(set_difference(X56,X57),X57),
    inference(variable_rename,[status(thm)],[t79_xboole_1]) ).

fof(c_0_16,plain,
    ! [X69,X70] : set_intersection2(X69,X70) = set_intersection2(X70,X69),
    inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0]) ).

fof(c_0_17,plain,
    ! [X24,X25] :
      ( ~ subset(X24,X25)
      | set_intersection2(X24,X25) = X24 ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t28_xboole_1])]) ).

fof(c_0_18,plain,
    ! [X26,X27] : subset(set_difference(X26,X27),X26),
    inference(variable_rename,[status(thm)],[t36_xboole_1]) ).

cnf(c_0_19,plain,
    ( set_intersection2(X1,X2) = empty_set
    | ~ disjoint(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

cnf(c_0_20,plain,
    disjoint(set_difference(X1,X2),X2),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_21,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_22,plain,
    ( set_intersection2(X1,X2) = X1
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_23,plain,
    subset(set_difference(X1,X2),X1),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_24,plain,
    set_intersection2(X1,set_difference(X2,X1)) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_19,c_0_20]),c_0_21]) ).

cnf(c_0_25,plain,
    set_intersection2(X1,set_difference(X1,X2)) = set_difference(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_23]),c_0_21]) ).

fof(c_0_26,plain,
    ! [X28,X29,X30] :
      ( ~ subset(X28,X29)
      | ~ disjoint(X29,X30)
      | disjoint(X28,X30) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t63_xboole_1])]) ).

cnf(c_0_27,plain,
    set_difference(X1,X1) = empty_set,
    inference(spm,[status(thm)],[c_0_24,c_0_25]) ).

fof(c_0_28,plain,
    ! [X14,X15,X16,X17,X18] :
      ( ( ~ subset(X14,X15)
        | ~ in(X16,X14)
        | in(X16,X15) )
      & ( in(esk4_2(X17,X18),X17)
        | subset(X17,X18) )
      & ( ~ in(esk4_2(X17,X18),X18)
        | subset(X17,X18) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_tarski])])])])])]) ).

fof(c_0_29,plain,
    ! [X33,X34,X35,X36,X37,X38,X39,X40] :
      ( ( ~ in(X36,X35)
        | in(X36,X33)
        | in(X36,X34)
        | X35 != set_union2(X33,X34) )
      & ( ~ in(X37,X33)
        | in(X37,X35)
        | X35 != set_union2(X33,X34) )
      & ( ~ in(X37,X34)
        | in(X37,X35)
        | X35 != set_union2(X33,X34) )
      & ( ~ in(esk5_3(X38,X39,X40),X38)
        | ~ in(esk5_3(X38,X39,X40),X40)
        | X40 = set_union2(X38,X39) )
      & ( ~ in(esk5_3(X38,X39,X40),X39)
        | ~ in(esk5_3(X38,X39,X40),X40)
        | X40 = set_union2(X38,X39) )
      & ( in(esk5_3(X38,X39,X40),X40)
        | in(esk5_3(X38,X39,X40),X38)
        | in(esk5_3(X38,X39,X40),X39)
        | X40 = set_union2(X38,X39) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d2_xboole_0])])])])])]) ).

cnf(c_0_30,plain,
    ( disjoint(X1,X3)
    | ~ subset(X1,X2)
    | ~ disjoint(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_31,plain,
    disjoint(empty_set,X1),
    inference(spm,[status(thm)],[c_0_20,c_0_27]) ).

fof(c_0_32,plain,
    ! [X7,X8,X9,X10,X11,X12] :
      ( ( ~ in(X9,X8)
        | subset(X9,X7)
        | X8 != powerset(X7) )
      & ( ~ subset(X10,X7)
        | in(X10,X8)
        | X8 != powerset(X7) )
      & ( ~ in(esk3_2(X11,X12),X12)
        | ~ subset(esk3_2(X11,X12),X11)
        | X12 = powerset(X11) )
      & ( in(esk3_2(X11,X12),X12)
        | subset(esk3_2(X11,X12),X11)
        | X12 = powerset(X11) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_zfmisc_1])])])])])]) ).

fof(c_0_33,negated_conjecture,
    ~ ! [X1,X2] : subset(powerset(set_difference(X1,X2)),set_union2(singleton(empty_set),set_difference(powerset(X1),powerset(X2)))),
    inference(assume_negation,[status(cth)],[t84_zfmisc_1]) ).

cnf(c_0_34,plain,
    ( subset(X1,X2)
    | ~ in(esk4_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_35,plain,
    ( in(X1,X3)
    | ~ in(X1,X2)
    | X3 != set_union2(X4,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_29]) ).

cnf(c_0_36,plain,
    ( disjoint(X1,X2)
    | ~ subset(X1,empty_set) ),
    inference(spm,[status(thm)],[c_0_30,c_0_31]) ).

cnf(c_0_37,plain,
    ( subset(X1,X3)
    | ~ in(X1,X2)
    | X2 != powerset(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

fof(c_0_38,plain,
    ! [X58,X59,X60,X61,X62,X63] :
      ( ( ~ in(X60,X59)
        | X60 = X58
        | X59 != singleton(X58) )
      & ( X61 != X58
        | in(X61,X59)
        | X59 != singleton(X58) )
      & ( ~ in(esk7_2(X62,X63),X63)
        | esk7_2(X62,X63) != X62
        | X63 = singleton(X62) )
      & ( in(esk7_2(X62,X63),X63)
        | esk7_2(X62,X63) = X62
        | X63 = singleton(X62) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_tarski])])])])])]) ).

fof(c_0_39,plain,
    ! [X21,X22,X23] :
      ( ~ subset(X21,X22)
      | ~ subset(X22,X23)
      | subset(X21,X23) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])]) ).

fof(c_0_40,negated_conjecture,
    ~ subset(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_33])])]) ).

cnf(c_0_41,plain,
    ( set_intersection2(X1,X2) = X1
    | ~ in(esk4_2(X1,X2),X2) ),
    inference(spm,[status(thm)],[c_0_22,c_0_34]) ).

cnf(c_0_42,plain,
    ( in(X1,set_union2(X2,X3))
    | ~ in(X1,X3) ),
    inference(er,[status(thm)],[c_0_35]) ).

cnf(c_0_43,plain,
    ( in(esk4_2(X1,X2),X1)
    | subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_44,plain,
    ( set_intersection2(X1,X2) = empty_set
    | ~ subset(X1,empty_set) ),
    inference(spm,[status(thm)],[c_0_19,c_0_36]) ).

cnf(c_0_45,plain,
    ( subset(X1,X2)
    | ~ in(X1,powerset(X2)) ),
    inference(er,[status(thm)],[c_0_37]) ).

cnf(c_0_46,plain,
    ( X1 = X3
    | ~ in(X1,X2)
    | X2 != singleton(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_47,plain,
    ( in(X1,X3)
    | ~ subset(X1,X2)
    | X3 != powerset(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_48,plain,
    ( subset(X1,X3)
    | ~ subset(X1,X2)
    | ~ subset(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_49,negated_conjecture,
    ~ subset(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_50,plain,
    ( set_intersection2(X1,set_union2(X2,X3)) = X1
    | ~ in(esk4_2(X1,set_union2(X2,X3)),X3) ),
    inference(spm,[status(thm)],[c_0_41,c_0_42]) ).

cnf(c_0_51,plain,
    ( set_intersection2(X1,X2) = X1
    | in(esk4_2(X1,X2),X1) ),
    inference(spm,[status(thm)],[c_0_22,c_0_43]) ).

cnf(c_0_52,plain,
    ( set_intersection2(X1,X2) = empty_set
    | ~ in(X1,powerset(empty_set)) ),
    inference(spm,[status(thm)],[c_0_44,c_0_45]) ).

cnf(c_0_53,plain,
    ( X1 = X2
    | ~ in(X1,singleton(X2)) ),
    inference(er,[status(thm)],[c_0_46]) ).

cnf(c_0_54,plain,
    ( in(X1,powerset(X2))
    | ~ subset(X1,X2) ),
    inference(er,[status(thm)],[c_0_47]) ).

cnf(c_0_55,plain,
    ( subset(X1,X2)
    | ~ subset(X1,X3)
    | ~ in(X3,powerset(X2)) ),
    inference(spm,[status(thm)],[c_0_48,c_0_45]) ).

cnf(c_0_56,negated_conjecture,
    in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),powerset(set_difference(esk1_0,esk2_0))),
    inference(spm,[status(thm)],[c_0_49,c_0_43]) ).

fof(c_0_57,plain,
    ! [X20] : subset(X20,X20),
    inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[reflexivity_r1_tarski])]) ).

cnf(c_0_58,plain,
    set_intersection2(X1,set_union2(X2,X1)) = X1,
    inference(spm,[status(thm)],[c_0_50,c_0_51]) ).

cnf(c_0_59,plain,
    ( set_intersection2(esk4_2(powerset(empty_set),X1),X2) = empty_set
    | set_intersection2(powerset(empty_set),X1) = powerset(empty_set) ),
    inference(spm,[status(thm)],[c_0_52,c_0_51]) ).

cnf(c_0_60,plain,
    ( set_intersection2(singleton(X1),X2) = singleton(X1)
    | esk4_2(singleton(X1),X2) = X1 ),
    inference(spm,[status(thm)],[c_0_53,c_0_51]) ).

cnf(c_0_61,plain,
    in(set_difference(X1,X2),powerset(X1)),
    inference(spm,[status(thm)],[c_0_54,c_0_23]) ).

fof(c_0_62,plain,
    ! [X1,X2,X3] :
      ( X3 = set_difference(X1,X2)
    <=> ! [X4] :
          ( in(X4,X3)
        <=> ( in(X4,X1)
            & ~ in(X4,X2) ) ) ),
    inference(fof_simplification,[status(thm)],[d4_xboole_0]) ).

cnf(c_0_63,negated_conjecture,
    ( subset(X1,set_difference(esk1_0,esk2_0))
    | ~ subset(X1,esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0))))) ),
    inference(spm,[status(thm)],[c_0_55,c_0_56]) ).

cnf(c_0_64,plain,
    subset(X1,X1),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_65,plain,
    ( set_intersection2(powerset(empty_set),X1) = powerset(empty_set)
    | esk4_2(powerset(empty_set),X1) = empty_set ),
    inference(spm,[status(thm)],[c_0_58,c_0_59]) ).

cnf(c_0_66,plain,
    ( in(X1,X3)
    | X1 != X2
    | X3 != singleton(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_67,plain,
    ( set_intersection2(singleton(X1),X2) = singleton(X1)
    | ~ in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_41,c_0_60]) ).

cnf(c_0_68,plain,
    in(empty_set,powerset(X1)),
    inference(spm,[status(thm)],[c_0_61,c_0_27]) ).

fof(c_0_69,plain,
    ! [X47,X48,X49,X50,X51,X52,X53,X54] :
      ( ( in(X50,X47)
        | ~ in(X50,X49)
        | X49 != set_difference(X47,X48) )
      & ( ~ in(X50,X48)
        | ~ in(X50,X49)
        | X49 != set_difference(X47,X48) )
      & ( ~ in(X51,X47)
        | in(X51,X48)
        | in(X51,X49)
        | X49 != set_difference(X47,X48) )
      & ( ~ in(esk6_3(X52,X53,X54),X54)
        | ~ in(esk6_3(X52,X53,X54),X52)
        | in(esk6_3(X52,X53,X54),X53)
        | X54 = set_difference(X52,X53) )
      & ( in(esk6_3(X52,X53,X54),X52)
        | in(esk6_3(X52,X53,X54),X54)
        | X54 = set_difference(X52,X53) )
      & ( ~ in(esk6_3(X52,X53,X54),X53)
        | in(esk6_3(X52,X53,X54),X54)
        | X54 = set_difference(X52,X53) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_62])])])])])]) ).

cnf(c_0_70,plain,
    ( subset(X1,X2)
    | ~ subset(X1,set_difference(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_48,c_0_23]) ).

cnf(c_0_71,negated_conjecture,
    subset(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),set_difference(esk1_0,esk2_0)),
    inference(spm,[status(thm)],[c_0_63,c_0_64]) ).

cnf(c_0_72,plain,
    ( in(X1,X3)
    | ~ in(X1,X2)
    | X3 != set_union2(X2,X4) ),
    inference(split_conjunct,[status(thm)],[c_0_29]) ).

cnf(c_0_73,plain,
    ( set_intersection2(powerset(empty_set),X1) = powerset(empty_set)
    | ~ in(empty_set,X1) ),
    inference(spm,[status(thm)],[c_0_41,c_0_65]) ).

cnf(c_0_74,plain,
    in(X1,singleton(X1)),
    inference(er,[status(thm)],[inference(er,[status(thm)],[c_0_66])]) ).

cnf(c_0_75,plain,
    set_intersection2(singleton(empty_set),powerset(X1)) = singleton(empty_set),
    inference(spm,[status(thm)],[c_0_67,c_0_68]) ).

cnf(c_0_76,negated_conjecture,
    ~ in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),
    inference(spm,[status(thm)],[c_0_49,c_0_34]) ).

cnf(c_0_77,plain,
    ( in(X1,X3)
    | in(X1,X4)
    | ~ in(X1,X2)
    | X4 != set_difference(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_78,negated_conjecture,
    subset(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),esk1_0),
    inference(spm,[status(thm)],[c_0_70,c_0_71]) ).

cnf(c_0_79,plain,
    ( disjoint(X1,X2)
    | ~ subset(X1,set_difference(X3,X2)) ),
    inference(spm,[status(thm)],[c_0_30,c_0_20]) ).

cnf(c_0_80,plain,
    ( in(X1,set_union2(X2,X3))
    | ~ in(X1,X2) ),
    inference(er,[status(thm)],[c_0_72]) ).

cnf(c_0_81,plain,
    set_intersection2(powerset(empty_set),singleton(empty_set)) = powerset(empty_set),
    inference(spm,[status(thm)],[c_0_73,c_0_74]) ).

cnf(c_0_82,plain,
    set_intersection2(powerset(X1),singleton(empty_set)) = singleton(empty_set),
    inference(spm,[status(thm)],[c_0_21,c_0_75]) ).

cnf(c_0_83,negated_conjecture,
    ~ in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),set_difference(powerset(esk1_0),powerset(esk2_0))),
    inference(spm,[status(thm)],[c_0_76,c_0_42]) ).

cnf(c_0_84,plain,
    ( in(X1,set_difference(X2,X3))
    | in(X1,X3)
    | ~ in(X1,X2) ),
    inference(er,[status(thm)],[c_0_77]) ).

cnf(c_0_85,negated_conjecture,
    in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),powerset(esk1_0)),
    inference(spm,[status(thm)],[c_0_54,c_0_78]) ).

cnf(c_0_86,plain,
    ( set_intersection2(X1,X2) = empty_set
    | ~ subset(X1,set_difference(X3,X2)) ),
    inference(spm,[status(thm)],[c_0_19,c_0_79]) ).

cnf(c_0_87,negated_conjecture,
    ~ in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),singleton(empty_set)),
    inference(spm,[status(thm)],[c_0_76,c_0_80]) ).

cnf(c_0_88,plain,
    singleton(empty_set) = powerset(empty_set),
    inference(rw,[status(thm)],[c_0_81,c_0_82]) ).

cnf(c_0_89,plain,
    ( set_intersection2(X1,X2) = X1
    | ~ in(X1,powerset(X2)) ),
    inference(spm,[status(thm)],[c_0_22,c_0_45]) ).

cnf(c_0_90,negated_conjecture,
    in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),powerset(esk2_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83,c_0_84]),c_0_85])]) ).

cnf(c_0_91,negated_conjecture,
    set_intersection2(esk2_0,esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(singleton(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0))))) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_86,c_0_71]),c_0_21]) ).

cnf(c_0_92,negated_conjecture,
    ~ in(esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(powerset(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))),powerset(empty_set)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_87,c_0_88]),c_0_88]) ).

cnf(c_0_93,negated_conjecture,
    esk4_2(powerset(set_difference(esk1_0,esk2_0)),set_union2(powerset(empty_set),set_difference(powerset(esk1_0),powerset(esk2_0)))) = empty_set,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_89,c_0_90]),c_0_21]),c_0_91]),c_0_88]) ).

cnf(c_0_94,plain,
    in(X1,powerset(X1)),
    inference(spm,[status(thm)],[c_0_54,c_0_64]) ).

cnf(c_0_95,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_92,c_0_93]),c_0_94])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.10  % Problem    : SET937+1 : TPTP v8.1.2. Released v3.2.0.
% 0.09/0.11  % Command    : run_E %s %d THM
% 0.10/0.32  % Computer : n001.cluster.edu
% 0.10/0.32  % Model    : x86_64 x86_64
% 0.10/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.10/0.32  % Memory   : 8042.1875MB
% 0.10/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.10/0.32  % CPULimit   : 2400
% 0.10/0.32  % WCLimit    : 300
% 0.10/0.32  % DateTime   : Mon Oct  2 17:08:06 EDT 2023
% 0.10/0.32  % CPUTime    : 
% 0.16/0.43  Running first-order model finding
% 0.16/0.43  Running: /export/starexec/sandbox/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --satauto-schedule=8 --cpu-limit=300 /export/starexec/sandbox/tmp/tmp.7925rjIrtN/E---3.1_14732.p
% 5.20/1.12  # Version: 3.1pre001
% 5.20/1.12  # Preprocessing class: FSMSSMSSSSSNFFN.
% 5.20/1.12  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 5.20/1.12  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 1500s (5) cores
% 5.20/1.12  # Starting new_bool_3 with 300s (1) cores
% 5.20/1.12  # Starting new_bool_1 with 300s (1) cores
% 5.20/1.12  # Starting sh5l with 300s (1) cores
% 5.20/1.12  # sh5l with pid 14814 completed with status 0
% 5.20/1.12  # Result found by sh5l
% 5.20/1.12  # Preprocessing class: FSMSSMSSSSSNFFN.
% 5.20/1.12  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 5.20/1.12  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 1500s (5) cores
% 5.20/1.12  # Starting new_bool_3 with 300s (1) cores
% 5.20/1.12  # Starting new_bool_1 with 300s (1) cores
% 5.20/1.12  # Starting sh5l with 300s (1) cores
% 5.20/1.12  # SinE strategy is gf500_gu_R04_F100_L20000
% 5.20/1.12  # Search class: FGHSM-FFMF32-MFFFFFNN
% 5.20/1.12  # Scheduled 5 strats onto 1 cores with 300 seconds (300 total)
% 5.20/1.12  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S038I with 181s (1) cores
% 5.20/1.12  # G-E--_208_C18_F1_SE_CS_SP_PS_S038I with pid 14820 completed with status 0
% 5.20/1.12  # Result found by G-E--_208_C18_F1_SE_CS_SP_PS_S038I
% 5.20/1.12  # Preprocessing class: FSMSSMSSSSSNFFN.
% 5.20/1.12  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 5.20/1.12  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 1500s (5) cores
% 5.20/1.12  # Starting new_bool_3 with 300s (1) cores
% 5.20/1.12  # Starting new_bool_1 with 300s (1) cores
% 5.20/1.12  # Starting sh5l with 300s (1) cores
% 5.20/1.12  # SinE strategy is gf500_gu_R04_F100_L20000
% 5.20/1.12  # Search class: FGHSM-FFMF32-MFFFFFNN
% 5.20/1.12  # Scheduled 5 strats onto 1 cores with 300 seconds (300 total)
% 5.20/1.12  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S038I with 181s (1) cores
% 5.20/1.12  # Preprocessing time       : 0.001 s
% 5.20/1.12  # Presaturation interreduction done
% 5.20/1.12  
% 5.20/1.12  # Proof found!
% 5.20/1.12  # SZS status Theorem
% 5.20/1.12  # SZS output start CNFRefutation
% See solution above
% 5.20/1.12  # Parsed axioms                        : 24
% 5.20/1.12  # Removed by relevancy pruning/SinE    : 0
% 5.20/1.12  # Initial clauses                      : 43
% 5.20/1.12  # Removed in clause preprocessing      : 0
% 5.20/1.12  # Initial clauses in saturation        : 43
% 5.20/1.12  # Processed clauses                    : 5539
% 5.20/1.12  # ...of these trivial                  : 115
% 5.20/1.12  # ...subsumed                          : 4020
% 5.20/1.12  # ...remaining for further processing  : 1404
% 5.20/1.12  # Other redundant clauses eliminated   : 20
% 5.20/1.12  # Clauses deleted for lack of memory   : 0
% 5.20/1.12  # Backward-subsumed                    : 19
% 5.20/1.12  # Backward-rewritten                   : 136
% 5.20/1.12  # Generated clauses                    : 48442
% 5.20/1.12  # ...of the previous two non-redundant : 40316
% 5.20/1.12  # ...aggressively subsumed             : 0
% 5.20/1.12  # Contextual simplify-reflections      : 1
% 5.20/1.12  # Paramodulations                      : 48220
% 5.20/1.12  # Factorizations                       : 203
% 5.20/1.12  # NegExts                              : 0
% 5.20/1.12  # Equation resolutions                 : 20
% 5.20/1.12  # Total rewrite steps                  : 15540
% 5.20/1.12  # Propositional unsat checks           : 0
% 5.20/1.12  #    Propositional check models        : 0
% 5.20/1.12  #    Propositional check unsatisfiable : 0
% 5.20/1.12  #    Propositional clauses             : 0
% 5.20/1.12  #    Propositional clauses after purity: 0
% 5.20/1.12  #    Propositional unsat core size     : 0
% 5.20/1.12  #    Propositional preprocessing time  : 0.000
% 5.20/1.12  #    Propositional encoding time       : 0.000
% 5.20/1.12  #    Propositional solver time         : 0.000
% 5.20/1.12  #    Success case prop preproc time    : 0.000
% 5.20/1.12  #    Success case prop encoding time   : 0.000
% 5.20/1.12  #    Success case prop solver time     : 0.000
% 5.20/1.12  # Current number of processed clauses  : 1196
% 5.20/1.12  #    Positive orientable unit clauses  : 239
% 5.20/1.12  #    Positive unorientable unit clauses: 2
% 5.20/1.12  #    Negative unit clauses             : 219
% 5.20/1.12  #    Non-unit-clauses                  : 736
% 5.20/1.12  # Current number of unprocessed clauses: 34739
% 5.20/1.12  # ...number of literals in the above   : 116015
% 5.20/1.12  # Current number of archived formulas  : 0
% 5.20/1.12  # Current number of archived clauses   : 198
% 5.20/1.12  # Clause-clause subsumption calls (NU) : 95329
% 5.20/1.12  # Rec. Clause-clause subsumption calls : 60920
% 5.20/1.12  # Non-unit clause-clause subsumptions  : 1768
% 5.20/1.12  # Unit Clause-clause subsumption calls : 72525
% 5.20/1.12  # Rewrite failures with RHS unbound    : 0
% 5.20/1.12  # BW rewrite match attempts            : 334
% 5.20/1.12  # BW rewrite match successes           : 45
% 5.20/1.12  # Condensation attempts                : 0
% 5.20/1.12  # Condensation successes               : 0
% 5.20/1.12  # Termbank termtop insertions          : 798709
% 5.20/1.12  
% 5.20/1.12  # -------------------------------------------------
% 5.20/1.12  # User time                : 0.564 s
% 5.20/1.12  # System time              : 0.021 s
% 5.20/1.12  # Total time               : 0.585 s
% 5.20/1.12  # Maximum resident set size: 1888 pages
% 5.20/1.12  
% 5.20/1.12  # -------------------------------------------------
% 5.20/1.12  # User time                : 0.566 s
% 5.20/1.12  # System time              : 0.021 s
% 5.20/1.12  # Total time               : 0.587 s
% 5.20/1.12  # Maximum resident set size: 1696 pages
% 5.20/1.12  % E---3.1 exiting
%------------------------------------------------------------------------------