TSTP Solution File: SET931+1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : SET931+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n002.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 03:02:02 EDT 2024

% Result   : Theorem 2.37s 1.16s
% Output   : CNFRefutation 2.37s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
fof(f2,axiom,
    empty(empty_set),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',fc1_xboole_0) ).

fof(f3,axiom,
    ! [X0,X1,X2] :
      ( subset(X0,unordered_pair(X1,X2))
    <=> ~ ( unordered_pair(X1,X2) != X0
          & singleton(X2) != X0
          & singleton(X1) != X0
          & empty_set != X0 ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',l46_zfmisc_1) ).

fof(f6,axiom,
    ! [X0,X1] : subset(X0,X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',reflexivity_r1_tarski) ).

fof(f7,axiom,
    ! [X0,X1] :
      ( empty_set = set_difference(X0,X1)
    <=> subset(X0,X1) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t37_xboole_1) ).

fof(f8,conjecture,
    ! [X0,X1,X2] :
      ( empty_set = set_difference(X0,unordered_pair(X1,X2))
    <=> ~ ( unordered_pair(X1,X2) != X0
          & singleton(X2) != X0
          & singleton(X1) != X0
          & empty_set != X0 ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t75_zfmisc_1) ).

fof(f9,negated_conjecture,
    ~ ! [X0,X1,X2] :
        ( empty_set = set_difference(X0,unordered_pair(X1,X2))
      <=> ~ ( unordered_pair(X1,X2) != X0
            & singleton(X2) != X0
            & singleton(X1) != X0
            & empty_set != X0 ) ),
    inference(negated_conjecture,[],[f8]) ).

fof(f10,plain,
    ! [X0] : subset(X0,X0),
    inference(rectify,[],[f6]) ).

fof(f11,plain,
    ! [X0,X1,X2] :
      ( subset(X0,unordered_pair(X1,X2))
    <=> ( unordered_pair(X1,X2) = X0
        | singleton(X2) = X0
        | singleton(X1) = X0
        | empty_set = X0 ) ),
    inference(ennf_transformation,[],[f3]) ).

fof(f12,plain,
    ? [X0,X1,X2] :
      ( empty_set = set_difference(X0,unordered_pair(X1,X2))
    <~> ( unordered_pair(X1,X2) = X0
        | singleton(X2) = X0
        | singleton(X1) = X0
        | empty_set = X0 ) ),
    inference(ennf_transformation,[],[f9]) ).

fof(f13,plain,
    ! [X0,X1,X2] :
      ( ( subset(X0,unordered_pair(X1,X2))
        | ( unordered_pair(X1,X2) != X0
          & singleton(X2) != X0
          & singleton(X1) != X0
          & empty_set != X0 ) )
      & ( unordered_pair(X1,X2) = X0
        | singleton(X2) = X0
        | singleton(X1) = X0
        | empty_set = X0
        | ~ subset(X0,unordered_pair(X1,X2)) ) ),
    inference(nnf_transformation,[],[f11]) ).

fof(f14,plain,
    ! [X0,X1,X2] :
      ( ( subset(X0,unordered_pair(X1,X2))
        | ( unordered_pair(X1,X2) != X0
          & singleton(X2) != X0
          & singleton(X1) != X0
          & empty_set != X0 ) )
      & ( unordered_pair(X1,X2) = X0
        | singleton(X2) = X0
        | singleton(X1) = X0
        | empty_set = X0
        | ~ subset(X0,unordered_pair(X1,X2)) ) ),
    inference(flattening,[],[f13]) ).

fof(f19,plain,
    ! [X0,X1] :
      ( ( empty_set = set_difference(X0,X1)
        | ~ subset(X0,X1) )
      & ( subset(X0,X1)
        | empty_set != set_difference(X0,X1) ) ),
    inference(nnf_transformation,[],[f7]) ).

fof(f20,plain,
    ? [X0,X1,X2] :
      ( ( ( unordered_pair(X1,X2) != X0
          & singleton(X2) != X0
          & singleton(X1) != X0
          & empty_set != X0 )
        | empty_set != set_difference(X0,unordered_pair(X1,X2)) )
      & ( unordered_pair(X1,X2) = X0
        | singleton(X2) = X0
        | singleton(X1) = X0
        | empty_set = X0
        | empty_set = set_difference(X0,unordered_pair(X1,X2)) ) ),
    inference(nnf_transformation,[],[f12]) ).

fof(f21,plain,
    ? [X0,X1,X2] :
      ( ( ( unordered_pair(X1,X2) != X0
          & singleton(X2) != X0
          & singleton(X1) != X0
          & empty_set != X0 )
        | empty_set != set_difference(X0,unordered_pair(X1,X2)) )
      & ( unordered_pair(X1,X2) = X0
        | singleton(X2) = X0
        | singleton(X1) = X0
        | empty_set = X0
        | empty_set = set_difference(X0,unordered_pair(X1,X2)) ) ),
    inference(flattening,[],[f20]) ).

fof(f22,plain,
    ( ? [X0,X1,X2] :
        ( ( ( unordered_pair(X1,X2) != X0
            & singleton(X2) != X0
            & singleton(X1) != X0
            & empty_set != X0 )
          | empty_set != set_difference(X0,unordered_pair(X1,X2)) )
        & ( unordered_pair(X1,X2) = X0
          | singleton(X2) = X0
          | singleton(X1) = X0
          | empty_set = X0
          | empty_set = set_difference(X0,unordered_pair(X1,X2)) ) )
   => ( ( ( sK2 != unordered_pair(sK3,sK4)
          & sK2 != singleton(sK4)
          & sK2 != singleton(sK3)
          & empty_set != sK2 )
        | empty_set != set_difference(sK2,unordered_pair(sK3,sK4)) )
      & ( sK2 = unordered_pair(sK3,sK4)
        | sK2 = singleton(sK4)
        | sK2 = singleton(sK3)
        | empty_set = sK2
        | empty_set = set_difference(sK2,unordered_pair(sK3,sK4)) ) ) ),
    introduced(choice_axiom,[]) ).

fof(f23,plain,
    ( ( ( sK2 != unordered_pair(sK3,sK4)
        & sK2 != singleton(sK4)
        & sK2 != singleton(sK3)
        & empty_set != sK2 )
      | empty_set != set_difference(sK2,unordered_pair(sK3,sK4)) )
    & ( sK2 = unordered_pair(sK3,sK4)
      | sK2 = singleton(sK4)
      | sK2 = singleton(sK3)
      | empty_set = sK2
      | empty_set = set_difference(sK2,unordered_pair(sK3,sK4)) ) ),
    inference(skolemisation,[status(esa),new_symbols(skolem,[sK2,sK3,sK4])],[f21,f22]) ).

fof(f25,plain,
    empty(empty_set),
    inference(cnf_transformation,[],[f2]) ).

fof(f26,plain,
    ! [X2,X0,X1] :
      ( unordered_pair(X1,X2) = X0
      | singleton(X2) = X0
      | singleton(X1) = X0
      | empty_set = X0
      | ~ subset(X0,unordered_pair(X1,X2)) ),
    inference(cnf_transformation,[],[f14]) ).

fof(f27,plain,
    ! [X2,X0,X1] :
      ( subset(X0,unordered_pair(X1,X2))
      | empty_set != X0 ),
    inference(cnf_transformation,[],[f14]) ).

fof(f28,plain,
    ! [X2,X0,X1] :
      ( subset(X0,unordered_pair(X1,X2))
      | singleton(X1) != X0 ),
    inference(cnf_transformation,[],[f14]) ).

fof(f29,plain,
    ! [X2,X0,X1] :
      ( subset(X0,unordered_pair(X1,X2))
      | singleton(X2) != X0 ),
    inference(cnf_transformation,[],[f14]) ).

fof(f33,plain,
    ! [X0] : subset(X0,X0),
    inference(cnf_transformation,[],[f10]) ).

fof(f34,plain,
    ! [X0,X1] :
      ( subset(X0,X1)
      | empty_set != set_difference(X0,X1) ),
    inference(cnf_transformation,[],[f19]) ).

fof(f35,plain,
    ! [X0,X1] :
      ( empty_set = set_difference(X0,X1)
      | ~ subset(X0,X1) ),
    inference(cnf_transformation,[],[f19]) ).

fof(f36,plain,
    ( sK2 = unordered_pair(sK3,sK4)
    | sK2 = singleton(sK4)
    | sK2 = singleton(sK3)
    | empty_set = sK2
    | empty_set = set_difference(sK2,unordered_pair(sK3,sK4)) ),
    inference(cnf_transformation,[],[f23]) ).

fof(f37,plain,
    ( empty_set != sK2
    | empty_set != set_difference(sK2,unordered_pair(sK3,sK4)) ),
    inference(cnf_transformation,[],[f23]) ).

fof(f38,plain,
    ( sK2 != singleton(sK3)
    | empty_set != set_difference(sK2,unordered_pair(sK3,sK4)) ),
    inference(cnf_transformation,[],[f23]) ).

fof(f39,plain,
    ( sK2 != singleton(sK4)
    | empty_set != set_difference(sK2,unordered_pair(sK3,sK4)) ),
    inference(cnf_transformation,[],[f23]) ).

fof(f40,plain,
    ( sK2 != unordered_pair(sK3,sK4)
    | empty_set != set_difference(sK2,unordered_pair(sK3,sK4)) ),
    inference(cnf_transformation,[],[f23]) ).

fof(f42,plain,
    ! [X2,X1] : subset(singleton(X2),unordered_pair(X1,X2)),
    inference(equality_resolution,[],[f29]) ).

fof(f43,plain,
    ! [X2,X1] : subset(singleton(X1),unordered_pair(X1,X2)),
    inference(equality_resolution,[],[f28]) ).

fof(f44,plain,
    ! [X2,X1] : subset(empty_set,unordered_pair(X1,X2)),
    inference(equality_resolution,[],[f27]) ).

cnf(c_50,plain,
    empty(empty_set),
    inference(cnf_transformation,[],[f25]) ).

cnf(c_52,plain,
    subset(singleton(X0),unordered_pair(X1,X0)),
    inference(cnf_transformation,[],[f42]) ).

cnf(c_53,plain,
    subset(singleton(X0),unordered_pair(X0,X1)),
    inference(cnf_transformation,[],[f43]) ).

cnf(c_54,plain,
    subset(empty_set,unordered_pair(X0,X1)),
    inference(cnf_transformation,[],[f44]) ).

cnf(c_55,plain,
    ( ~ subset(X0,unordered_pair(X1,X2))
    | unordered_pair(X1,X2) = X0
    | singleton(X1) = X0
    | singleton(X2) = X0
    | X0 = empty_set ),
    inference(cnf_transformation,[],[f26]) ).

cnf(c_58,plain,
    subset(X0,X0),
    inference(cnf_transformation,[],[f33]) ).

cnf(c_59,plain,
    ( ~ subset(X0,X1)
    | set_difference(X0,X1) = empty_set ),
    inference(cnf_transformation,[],[f35]) ).

cnf(c_60,plain,
    ( set_difference(X0,X1) != empty_set
    | subset(X0,X1) ),
    inference(cnf_transformation,[],[f34]) ).

cnf(c_61,negated_conjecture,
    ( set_difference(sK2,unordered_pair(sK3,sK4)) != empty_set
    | unordered_pair(sK3,sK4) != sK2 ),
    inference(cnf_transformation,[],[f40]) ).

cnf(c_62,negated_conjecture,
    ( set_difference(sK2,unordered_pair(sK3,sK4)) != empty_set
    | singleton(sK4) != sK2 ),
    inference(cnf_transformation,[],[f39]) ).

cnf(c_63,negated_conjecture,
    ( set_difference(sK2,unordered_pair(sK3,sK4)) != empty_set
    | singleton(sK3) != sK2 ),
    inference(cnf_transformation,[],[f38]) ).

cnf(c_64,negated_conjecture,
    ( set_difference(sK2,unordered_pair(sK3,sK4)) != empty_set
    | empty_set != sK2 ),
    inference(cnf_transformation,[],[f37]) ).

cnf(c_65,negated_conjecture,
    ( set_difference(sK2,unordered_pair(sK3,sK4)) = empty_set
    | unordered_pair(sK3,sK4) = sK2
    | singleton(sK3) = sK2
    | singleton(sK4) = sK2
    | empty_set = sK2 ),
    inference(cnf_transformation,[],[f36]) ).

cnf(c_609,plain,
    unordered_pair(sK3,sK4) = sP0_iProver_def,
    definition ).

cnf(c_610,plain,
    set_difference(sK2,sP0_iProver_def) = sP1_iProver_def,
    definition ).

cnf(c_611,plain,
    singleton(sK3) = sP2_iProver_def,
    definition ).

cnf(c_612,plain,
    singleton(sK4) = sP3_iProver_def,
    definition ).

cnf(c_613,negated_conjecture,
    ( empty_set = sK2
    | sP0_iProver_def = sK2
    | sP1_iProver_def = empty_set
    | sP2_iProver_def = sK2
    | sP3_iProver_def = sK2 ),
    inference(demodulation,[status(thm)],[c_65,c_612,c_611,c_609,c_610]) ).

cnf(c_614,negated_conjecture,
    ( empty_set != sK2
    | sP1_iProver_def != empty_set ),
    inference(demodulation,[status(thm)],[c_64]) ).

cnf(c_615,negated_conjecture,
    ( sP1_iProver_def != empty_set
    | sP2_iProver_def != sK2 ),
    inference(demodulation,[status(thm)],[c_63]) ).

cnf(c_616,negated_conjecture,
    ( sP1_iProver_def != empty_set
    | sP3_iProver_def != sK2 ),
    inference(demodulation,[status(thm)],[c_62]) ).

cnf(c_617,negated_conjecture,
    ( sP0_iProver_def != sK2
    | sP1_iProver_def != empty_set ),
    inference(demodulation,[status(thm)],[c_61]) ).

cnf(c_1028,plain,
    subset(empty_set,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_609,c_54]) ).

cnf(c_1035,plain,
    ( empty_set = sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def
    | subset(sK2,sP0_iProver_def) ),
    inference(superposition,[status(thm)],[c_613,c_1028]) ).

cnf(c_1043,plain,
    subset(singleton(sK4),sP0_iProver_def),
    inference(superposition,[status(thm)],[c_609,c_52]) ).

cnf(c_1044,plain,
    subset(sP3_iProver_def,sP0_iProver_def),
    inference(light_normalisation,[status(thm)],[c_1043,c_612]) ).

cnf(c_1071,plain,
    subset(singleton(sK3),sP0_iProver_def),
    inference(superposition,[status(thm)],[c_609,c_53]) ).

cnf(c_1072,plain,
    subset(sP2_iProver_def,sP0_iProver_def),
    inference(light_normalisation,[status(thm)],[c_1071,c_611]) ).

cnf(c_1099,plain,
    set_difference(X0,X0) = empty_set,
    inference(superposition,[status(thm)],[c_58,c_59]) ).

cnf(c_1102,plain,
    ( set_difference(sK2,sP0_iProver_def) = empty_set
    | empty_set = sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(superposition,[status(thm)],[c_1035,c_59]) ).

cnf(c_1105,plain,
    set_difference(sP3_iProver_def,sP0_iProver_def) = empty_set,
    inference(superposition,[status(thm)],[c_1044,c_59]) ).

cnf(c_1108,plain,
    set_difference(sP2_iProver_def,sP0_iProver_def) = empty_set,
    inference(superposition,[status(thm)],[c_1072,c_59]) ).

cnf(c_1109,plain,
    ( empty_set = sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(light_normalisation,[status(thm)],[c_1102,c_610]) ).

cnf(c_1122,plain,
    ( empty_set != sP1_iProver_def
    | subset(sK2,sP0_iProver_def) ),
    inference(superposition,[status(thm)],[c_610,c_60]) ).

cnf(c_1145,plain,
    ( ~ subset(X0,sP0_iProver_def)
    | unordered_pair(sK3,sK4) = X0
    | singleton(sK3) = X0
    | singleton(sK4) = X0
    | X0 = empty_set ),
    inference(superposition,[status(thm)],[c_609,c_55]) ).

cnf(c_1146,plain,
    ( ~ subset(X0,sP0_iProver_def)
    | X0 = empty_set
    | X0 = sP0_iProver_def
    | X0 = sP2_iProver_def
    | X0 = sP3_iProver_def ),
    inference(light_normalisation,[status(thm)],[c_1145,c_609,c_611,c_612]) ).

cnf(c_1180,plain,
    ( empty_set != sP1_iProver_def
    | sK2 != sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(superposition,[status(thm)],[c_1109,c_614]) ).

cnf(c_1213,plain,
    ( sK2 != sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(global_subsumption_just,[status(thm)],[c_1180,c_1109,c_1180]) ).

cnf(c_1327,plain,
    ( sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def
    | subset(sK2,sP0_iProver_def) ),
    inference(superposition,[status(thm)],[c_1109,c_1122]) ).

cnf(c_1388,plain,
    ( empty_set = sK2
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(superposition,[status(thm)],[c_1327,c_1146]) ).

cnf(c_1407,plain,
    ( sK2 = sP0_iProver_def
    | sK2 = sP1_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(superposition,[status(thm)],[c_1388,c_1109]) ).

cnf(c_1415,plain,
    ( empty_set != sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(superposition,[status(thm)],[c_1388,c_614]) ).

cnf(c_1441,plain,
    ( sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def
    | sK2 = sP3_iProver_def ),
    inference(global_subsumption_just,[status(thm)],[c_1415,c_1213,c_1407]) ).

cnf(c_1449,plain,
    ( set_difference(sP3_iProver_def,sP0_iProver_def) = sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def ),
    inference(superposition,[status(thm)],[c_1441,c_610]) ).

cnf(c_1450,plain,
    ( empty_set = sP1_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def ),
    inference(light_normalisation,[status(thm)],[c_1449,c_1105]) ).

cnf(c_1473,plain,
    ( sK2 != sP3_iProver_def
    | sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def ),
    inference(superposition,[status(thm)],[c_1450,c_616]) ).

cnf(c_1503,plain,
    ( sK2 = sP0_iProver_def
    | sK2 = sP2_iProver_def ),
    inference(global_subsumption_just,[status(thm)],[c_1473,c_1441,c_1473]) ).

cnf(c_1509,plain,
    ( set_difference(sP2_iProver_def,sP0_iProver_def) = sP1_iProver_def
    | sK2 = sP0_iProver_def ),
    inference(superposition,[status(thm)],[c_1503,c_610]) ).

cnf(c_1510,plain,
    ( empty_set = sP1_iProver_def
    | sK2 = sP0_iProver_def ),
    inference(light_normalisation,[status(thm)],[c_1509,c_1108]) ).

cnf(c_1527,plain,
    ( sK2 = sP0_iProver_def
    | empty(sP1_iProver_def) ),
    inference(superposition,[status(thm)],[c_1510,c_50]) ).

cnf(c_1531,plain,
    ( sK2 != sP2_iProver_def
    | sK2 = sP0_iProver_def ),
    inference(superposition,[status(thm)],[c_1510,c_615]) ).

cnf(c_1554,plain,
    sK2 = sP0_iProver_def,
    inference(global_subsumption_just,[status(thm)],[c_1527,c_1503,c_1531]) ).

cnf(c_1558,plain,
    set_difference(sP0_iProver_def,sP0_iProver_def) = sP1_iProver_def,
    inference(demodulation,[status(thm)],[c_610,c_1554]) ).

cnf(c_1560,plain,
    ( empty_set != sP1_iProver_def
    | sP0_iProver_def != sP0_iProver_def ),
    inference(demodulation,[status(thm)],[c_617,c_1554]) ).

cnf(c_1570,plain,
    empty_set != sP1_iProver_def,
    inference(equality_resolution_simp,[status(thm)],[c_1560]) ).

cnf(c_1571,plain,
    empty_set = sP1_iProver_def,
    inference(demodulation,[status(thm)],[c_1558,c_1099]) ).

cnf(c_1613,plain,
    sP1_iProver_def != sP1_iProver_def,
    inference(demodulation,[status(thm)],[c_1570,c_1571]) ).

cnf(c_1614,plain,
    $false,
    inference(equality_resolution_simp,[status(thm)],[c_1613]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET931+1 : TPTP v8.1.2. Released v3.2.0.
% 0.03/0.12  % Command  : run_iprover %s %d THM
% 0.12/0.33  % Computer : n002.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Thu May  2 20:51:12 EDT 2024
% 0.12/0.33  % CPUTime  : 
% 0.18/0.46  Running first-order theorem proving
% 0.18/0.46  Running: /export/starexec/sandbox/solver/bin/run_problem --schedule fof_schedule --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox/benchmark/theBenchmark.p 300
% 2.37/1.16  % SZS status Started for theBenchmark.p
% 2.37/1.16  % SZS status Theorem for theBenchmark.p
% 2.37/1.16  
% 2.37/1.16  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 2.37/1.16  
% 2.37/1.16  ------  iProver source info
% 2.37/1.16  
% 2.37/1.16  git: date: 2024-05-02 19:28:25 +0000
% 2.37/1.16  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 2.37/1.16  git: non_committed_changes: false
% 2.37/1.16  
% 2.37/1.16  ------ Parsing...
% 2.37/1.16  ------ Clausification by vclausify_rel  & Parsing by iProver...
% 2.37/1.16  
% 2.37/1.16  ------ Preprocessing... sup_sim: 0  sf_s  rm: 1 0s  sf_e  pe_s  pe_e  sup_sim: 0  sf_s  rm: 1 0s  sf_e  pe_s  pe_e 
% 2.37/1.16  
% 2.37/1.16  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 2.37/1.16  
% 2.37/1.16  ------ Preprocessing... sf_s  rm: 1 0s  sf_e  sf_s  rm: 0 0s  sf_e 
% 2.37/1.16  ------ Proving...
% 2.37/1.16  ------ Problem Properties 
% 2.37/1.16  
% 2.37/1.16  
% 2.37/1.16  clauses                                 20
% 2.37/1.16  conjectures                             5
% 2.37/1.16  EPR                                     9
% 2.37/1.16  Horn                                    18
% 2.37/1.16  unary                                   12
% 2.37/1.16  binary                                  6
% 2.37/1.16  lits                                    34
% 2.37/1.16  lits eq                                 24
% 2.37/1.16  fd_pure                                 0
% 2.37/1.16  fd_pseudo                               0
% 2.37/1.16  fd_cond                                 0
% 2.37/1.16  fd_pseudo_cond                          1
% 2.37/1.16  AC symbols                              0
% 2.37/1.16  
% 2.37/1.16  ------ Schedule dynamic 5 is on 
% 2.37/1.16  
% 2.37/1.16  ------ Input Options "--resolution_flag false --inst_lit_sel_side none" Time Limit: 10.
% 2.37/1.16  
% 2.37/1.16  
% 2.37/1.16  ------ 
% 2.37/1.16  Current options:
% 2.37/1.16  ------ 
% 2.37/1.16  
% 2.37/1.16  
% 2.37/1.16  
% 2.37/1.16  
% 2.37/1.16  ------ Proving...
% 2.37/1.16  
% 2.37/1.16  
% 2.37/1.16  % SZS status Theorem for theBenchmark.p
% 2.37/1.16  
% 2.37/1.16  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 2.37/1.16  
% 2.37/1.16  
%------------------------------------------------------------------------------