TSTP Solution File: SET931+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET931+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:23:16 EDT 2022

% Result   : Theorem 3.57s 1.52s
% Output   : Proof 4.93s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : SET931+1 : TPTP v8.1.0. Released v3.2.0.
% 0.00/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.13/0.33  % Computer : n009.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 600
% 0.13/0.33  % DateTime : Sun Jul 10 21:43:52 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.55/0.58          ____       _                          
% 0.55/0.58    ___  / __ \_____(_)___  ________  __________
% 0.55/0.58   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.55/0.58  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.55/0.58  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.55/0.58  
% 0.55/0.58  A Theorem Prover for First-Order Logic
% 0.55/0.58  (ePrincess v.1.0)
% 0.55/0.58  
% 0.55/0.58  (c) Philipp Rümmer, 2009-2015
% 0.55/0.58  (c) Peter Backeman, 2014-2015
% 0.55/0.58  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.55/0.58  Free software under GNU Lesser General Public License (LGPL).
% 0.55/0.58  Bug reports to peter@backeman.se
% 0.55/0.58  
% 0.55/0.58  For more information, visit http://user.uu.se/~petba168/breu/
% 0.55/0.58  
% 0.55/0.58  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.61/0.63  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.33/0.87  Prover 0: Preprocessing ...
% 1.71/1.03  Prover 0: Warning: ignoring some quantifiers
% 1.71/1.04  Prover 0: Constructing countermodel ...
% 3.02/1.42  Prover 0: gave up
% 3.02/1.42  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 3.02/1.44  Prover 1: Preprocessing ...
% 3.45/1.48  Prover 1: Constructing countermodel ...
% 3.57/1.52  Prover 1: proved (100ms)
% 3.57/1.52  
% 3.57/1.52  No countermodel exists, formula is valid
% 3.57/1.52  % SZS status Theorem for theBenchmark
% 3.57/1.52  
% 3.57/1.52  Generating proof ... found it (size 66)
% 4.30/1.75  
% 4.30/1.75  % SZS output start Proof for theBenchmark
% 4.30/1.75  Assumed formulas after preprocessing and simplification: 
% 4.30/1.75  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] : ( ~ (v8 = 0) & set_difference(v0, v3) = v4 & empty(v9) = 0 & empty(v7) = v8 & empty(empty_set) = 0 & singleton(v2) = v6 & singleton(v1) = v5 & unordered_pair(v1, v2) = v3 &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] :  ! [v14] : (v14 = 0 |  ~ (subset(v10, v13) = v14) |  ~ (unordered_pair(v11, v12) = v13) |  ? [v15] :  ? [v16] : ( ~ (v16 = v10) &  ~ (v15 = v10) & singleton(v12) = v16 & singleton(v11) = v15)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = v10 | v10 = empty_set |  ~ (subset(v10, v13) = 0) |  ~ (unordered_pair(v11, v12) = v13) |  ? [v14] :  ? [v15] : (singleton(v12) = v15 & singleton(v11) = v14 & (v15 = v10 | v14 = v10))) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = 0 |  ~ (subset(v10, v10) = v13) |  ~ (unordered_pair(v11, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = 0 |  ~ (subset(empty_set, v12) = v13) |  ~ (unordered_pair(v10, v11) = v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (set_difference(v13, v12) = v11) |  ~ (set_difference(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (subset(v13, v12) = v11) |  ~ (subset(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (unordered_pair(v13, v12) = v11) |  ~ (unordered_pair(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v12 = empty_set |  ~ (set_difference(v10, v11) = v12) |  ? [v13] : ( ~ (v13 = 0) & subset(v10, v11) = v13)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (empty(v12) = v11) |  ~ (empty(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (singleton(v12) = v11) |  ~ (singleton(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v10, v11) = v12) | unordered_pair(v11, v10) = v12) &  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (subset(v10, v10) = v11)) &  ! [v10] :  ! [v11] : ( ~ (set_difference(v10, v11) = empty_set) | subset(v10, v11) = 0) & ((v4 = empty_set &  ~ (v6 = v0) &  ~ (v5 = v0) &  ~ (v3 = v0) &  ~ (v0 = empty_set)) | ( ~ (v4 = empty_set) & (v6 = v0 | v5 = v0 | v3 = v0 | v0 = empty_set))))
% 4.78/1.78  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 yields:
% 4.78/1.78  | (1)  ~ (all_0_1_1 = 0) & set_difference(all_0_9_9, all_0_6_6) = all_0_5_5 & empty(all_0_0_0) = 0 & empty(all_0_2_2) = all_0_1_1 & empty(empty_set) = 0 & singleton(all_0_7_7) = all_0_3_3 & singleton(all_0_8_8) = all_0_4_4 & unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (subset(v0, v3) = v4) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v5] :  ? [v6] : ( ~ (v6 = v0) &  ~ (v5 = v0) & singleton(v2) = v6 & singleton(v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v0 | v0 = empty_set |  ~ (subset(v0, v3) = 0) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v4] :  ? [v5] : (singleton(v2) = v5 & singleton(v1) = v4 & (v5 = v0 | v4 = v0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(v0, v0) = v3) |  ~ (unordered_pair(v1, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(empty_set, v2) = v3) |  ~ (unordered_pair(v0, v1) = v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_difference(v3, v2) = v1) |  ~ (set_difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = empty_set |  ~ (set_difference(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & subset(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (empty(v2) = v1) |  ~ (empty(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2) &  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (subset(v0, v0) = v1)) &  ! [v0] :  ! [v1] : ( ~ (set_difference(v0, v1) = empty_set) | subset(v0, v1) = 0) & ((all_0_5_5 = empty_set &  ~ (all_0_3_3 = all_0_9_9) &  ~ (all_0_4_4 = all_0_9_9) &  ~ (all_0_6_6 = all_0_9_9) &  ~ (all_0_9_9 = empty_set)) | ( ~ (all_0_5_5 = empty_set) & (all_0_3_3 = all_0_9_9 | all_0_4_4 = all_0_9_9 | all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set)))
% 4.78/1.79  |
% 4.78/1.79  | Applying alpha-rule on (1) yields:
% 4.78/1.79  | (2)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (empty(v2) = v1) |  ~ (empty(v2) = v0))
% 4.78/1.79  | (3)  ~ (all_0_1_1 = 0)
% 4.78/1.79  | (4) singleton(all_0_7_7) = all_0_3_3
% 4.78/1.79  | (5)  ! [v0] :  ! [v1] : ( ~ (set_difference(v0, v1) = empty_set) | subset(v0, v1) = 0)
% 4.78/1.79  | (6) set_difference(all_0_9_9, all_0_6_6) = all_0_5_5
% 4.78/1.79  | (7) singleton(all_0_8_8) = all_0_4_4
% 4.78/1.79  | (8)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 4.78/1.79  | (9) unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6
% 4.78/1.79  | (10)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2)
% 4.78/1.79  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (set_difference(v3, v2) = v1) |  ~ (set_difference(v3, v2) = v0))
% 4.78/1.79  | (12)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = empty_set |  ~ (set_difference(v0, v1) = v2) |  ? [v3] : ( ~ (v3 = 0) & subset(v0, v1) = v3))
% 4.78/1.80  | (13)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v0 | v0 = empty_set |  ~ (subset(v0, v3) = 0) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v4] :  ? [v5] : (singleton(v2) = v5 & singleton(v1) = v4 & (v5 = v0 | v4 = v0)))
% 4.86/1.80  | (14)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (subset(v0, v3) = v4) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v5] :  ? [v6] : ( ~ (v6 = v0) &  ~ (v5 = v0) & singleton(v2) = v6 & singleton(v1) = v5))
% 4.86/1.80  | (15)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 4.86/1.80  | (16)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0))
% 4.86/1.80  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(empty_set, v2) = v3) |  ~ (unordered_pair(v0, v1) = v2))
% 4.86/1.80  | (18) empty(empty_set) = 0
% 4.86/1.80  | (19)  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (subset(v0, v0) = v1))
% 4.86/1.80  | (20) empty(all_0_2_2) = all_0_1_1
% 4.86/1.80  | (21) empty(all_0_0_0) = 0
% 4.86/1.80  | (22)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(v0, v0) = v3) |  ~ (unordered_pair(v1, v2) = v0))
% 4.86/1.80  | (23) (all_0_5_5 = empty_set &  ~ (all_0_3_3 = all_0_9_9) &  ~ (all_0_4_4 = all_0_9_9) &  ~ (all_0_6_6 = all_0_9_9) &  ~ (all_0_9_9 = empty_set)) | ( ~ (all_0_5_5 = empty_set) & (all_0_3_3 = all_0_9_9 | all_0_4_4 = all_0_9_9 | all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set))
% 4.86/1.80  |
% 4.86/1.80  | Instantiating formula (5) with all_0_6_6, all_0_9_9 yields:
% 4.86/1.80  | (24)  ~ (set_difference(all_0_9_9, all_0_6_6) = empty_set) | subset(all_0_9_9, all_0_6_6) = 0
% 4.86/1.80  |
% 4.86/1.80  | Instantiating formula (12) with all_0_5_5, all_0_6_6, all_0_9_9 and discharging atoms set_difference(all_0_9_9, all_0_6_6) = all_0_5_5, yields:
% 4.86/1.80  | (25) all_0_5_5 = empty_set |  ? [v0] : ( ~ (v0 = 0) & subset(all_0_9_9, all_0_6_6) = v0)
% 4.86/1.80  |
% 4.86/1.80  +-Applying beta-rule and splitting (23), into two cases.
% 4.86/1.80  |-Branch one:
% 4.86/1.80  | (26) all_0_5_5 = empty_set &  ~ (all_0_3_3 = all_0_9_9) &  ~ (all_0_4_4 = all_0_9_9) &  ~ (all_0_6_6 = all_0_9_9) &  ~ (all_0_9_9 = empty_set)
% 4.86/1.80  |
% 4.86/1.80  	| Applying alpha-rule on (26) yields:
% 4.86/1.80  	| (27)  ~ (all_0_6_6 = all_0_9_9)
% 4.86/1.80  	| (28)  ~ (all_0_4_4 = all_0_9_9)
% 4.86/1.80  	| (29)  ~ (all_0_3_3 = all_0_9_9)
% 4.86/1.80  	| (30)  ~ (all_0_9_9 = empty_set)
% 4.86/1.80  	| (31) all_0_5_5 = empty_set
% 4.86/1.80  	|
% 4.86/1.80  	| From (31) and (6) follows:
% 4.86/1.80  	| (32) set_difference(all_0_9_9, all_0_6_6) = empty_set
% 4.86/1.80  	|
% 4.86/1.80  	+-Applying beta-rule and splitting (24), into two cases.
% 4.86/1.80  	|-Branch one:
% 4.86/1.80  	| (33)  ~ (set_difference(all_0_9_9, all_0_6_6) = empty_set)
% 4.86/1.80  	|
% 4.86/1.80  		| Using (32) and (33) yields:
% 4.86/1.80  		| (34) $false
% 4.86/1.80  		|
% 4.86/1.80  		|-The branch is then unsatisfiable
% 4.86/1.80  	|-Branch two:
% 4.86/1.80  	| (32) set_difference(all_0_9_9, all_0_6_6) = empty_set
% 4.86/1.80  	| (36) subset(all_0_9_9, all_0_6_6) = 0
% 4.86/1.80  	|
% 4.86/1.80  		| Instantiating formula (13) with all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 and discharging atoms subset(all_0_9_9, all_0_6_6) = 0, unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 4.86/1.81  		| (37) all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set |  ? [v0] :  ? [v1] : (singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0 & (v1 = all_0_9_9 | v0 = all_0_9_9))
% 4.86/1.81  		|
% 4.86/1.81  		+-Applying beta-rule and splitting (37), into two cases.
% 4.86/1.81  		|-Branch one:
% 4.86/1.81  		| (38) all_0_9_9 = empty_set
% 4.86/1.81  		|
% 4.86/1.81  			| Equations (38) can reduce 30 to:
% 4.86/1.81  			| (39) $false
% 4.86/1.81  			|
% 4.86/1.81  			|-The branch is then unsatisfiable
% 4.86/1.81  		|-Branch two:
% 4.86/1.81  		| (30)  ~ (all_0_9_9 = empty_set)
% 4.86/1.81  		| (41) all_0_6_6 = all_0_9_9 |  ? [v0] :  ? [v1] : (singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0 & (v1 = all_0_9_9 | v0 = all_0_9_9))
% 4.86/1.81  		|
% 4.86/1.81  			+-Applying beta-rule and splitting (41), into two cases.
% 4.86/1.81  			|-Branch one:
% 4.86/1.81  			| (42) all_0_6_6 = all_0_9_9
% 4.86/1.81  			|
% 4.86/1.81  				| Equations (42) can reduce 27 to:
% 4.86/1.81  				| (39) $false
% 4.86/1.81  				|
% 4.86/1.81  				|-The branch is then unsatisfiable
% 4.86/1.81  			|-Branch two:
% 4.86/1.81  			| (27)  ~ (all_0_6_6 = all_0_9_9)
% 4.86/1.81  			| (45)  ? [v0] :  ? [v1] : (singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0 & (v1 = all_0_9_9 | v0 = all_0_9_9))
% 4.86/1.81  			|
% 4.86/1.81  				| Instantiating (45) with all_39_0_10, all_39_1_11 yields:
% 4.86/1.81  				| (46) singleton(all_0_7_7) = all_39_0_10 & singleton(all_0_8_8) = all_39_1_11 & (all_39_0_10 = all_0_9_9 | all_39_1_11 = all_0_9_9)
% 4.86/1.81  				|
% 4.86/1.81  				| Applying alpha-rule on (46) yields:
% 4.86/1.81  				| (47) singleton(all_0_7_7) = all_39_0_10
% 4.86/1.81  				| (48) singleton(all_0_8_8) = all_39_1_11
% 4.86/1.81  				| (49) all_39_0_10 = all_0_9_9 | all_39_1_11 = all_0_9_9
% 4.86/1.81  				|
% 4.86/1.81  				| Instantiating formula (15) with all_0_7_7, all_39_0_10, all_0_3_3 and discharging atoms singleton(all_0_7_7) = all_39_0_10, singleton(all_0_7_7) = all_0_3_3, yields:
% 4.86/1.81  				| (50) all_39_0_10 = all_0_3_3
% 4.86/1.81  				|
% 4.86/1.81  				| Instantiating formula (15) with all_0_8_8, all_39_1_11, all_0_4_4 and discharging atoms singleton(all_0_8_8) = all_39_1_11, singleton(all_0_8_8) = all_0_4_4, yields:
% 4.86/1.81  				| (51) all_39_1_11 = all_0_4_4
% 4.86/1.81  				|
% 4.86/1.81  				+-Applying beta-rule and splitting (49), into two cases.
% 4.86/1.81  				|-Branch one:
% 4.86/1.81  				| (52) all_39_0_10 = all_0_9_9
% 4.86/1.81  				|
% 4.86/1.81  					| Combining equations (52,50) yields a new equation:
% 4.86/1.81  					| (53) all_0_3_3 = all_0_9_9
% 4.86/1.81  					|
% 4.86/1.81  					| Equations (53) can reduce 29 to:
% 4.86/1.81  					| (39) $false
% 4.86/1.81  					|
% 4.86/1.81  					|-The branch is then unsatisfiable
% 4.86/1.81  				|-Branch two:
% 4.86/1.81  				| (55)  ~ (all_39_0_10 = all_0_9_9)
% 4.86/1.81  				| (56) all_39_1_11 = all_0_9_9
% 4.86/1.81  				|
% 4.86/1.81  					| Combining equations (51,56) yields a new equation:
% 4.86/1.81  					| (57) all_0_4_4 = all_0_9_9
% 4.86/1.81  					|
% 4.86/1.81  					| Simplifying 57 yields:
% 4.86/1.81  					| (58) all_0_4_4 = all_0_9_9
% 4.86/1.81  					|
% 4.86/1.81  					| Equations (58) can reduce 28 to:
% 4.86/1.81  					| (39) $false
% 4.86/1.81  					|
% 4.86/1.81  					|-The branch is then unsatisfiable
% 4.86/1.81  |-Branch two:
% 4.86/1.81  | (60)  ~ (all_0_5_5 = empty_set) & (all_0_3_3 = all_0_9_9 | all_0_4_4 = all_0_9_9 | all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set)
% 4.86/1.81  |
% 4.86/1.81  	| Applying alpha-rule on (60) yields:
% 4.86/1.81  	| (61)  ~ (all_0_5_5 = empty_set)
% 4.86/1.81  	| (62) all_0_3_3 = all_0_9_9 | all_0_4_4 = all_0_9_9 | all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set
% 4.86/1.81  	|
% 4.86/1.81  	+-Applying beta-rule and splitting (25), into two cases.
% 4.86/1.81  	|-Branch one:
% 4.86/1.81  	| (31) all_0_5_5 = empty_set
% 4.86/1.81  	|
% 4.86/1.81  		| Equations (31) can reduce 61 to:
% 4.86/1.81  		| (39) $false
% 4.86/1.81  		|
% 4.86/1.81  		|-The branch is then unsatisfiable
% 4.86/1.81  	|-Branch two:
% 4.86/1.81  	| (61)  ~ (all_0_5_5 = empty_set)
% 4.86/1.81  	| (66)  ? [v0] : ( ~ (v0 = 0) & subset(all_0_9_9, all_0_6_6) = v0)
% 4.86/1.81  	|
% 4.86/1.81  		| Instantiating (66) with all_20_0_14 yields:
% 4.86/1.81  		| (67)  ~ (all_20_0_14 = 0) & subset(all_0_9_9, all_0_6_6) = all_20_0_14
% 4.86/1.81  		|
% 4.86/1.81  		| Applying alpha-rule on (67) yields:
% 4.86/1.81  		| (68)  ~ (all_20_0_14 = 0)
% 4.86/1.81  		| (69) subset(all_0_9_9, all_0_6_6) = all_20_0_14
% 4.86/1.81  		|
% 4.86/1.81  		| Instantiating formula (19) with all_20_0_14, all_0_9_9 yields:
% 4.86/1.81  		| (70) all_20_0_14 = 0 |  ~ (subset(all_0_9_9, all_0_9_9) = all_20_0_14)
% 4.86/1.81  		|
% 4.86/1.81  		| Instantiating formula (17) with all_20_0_14, all_0_6_6, all_0_7_7, all_0_8_8 and discharging atoms unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 4.86/1.81  		| (71) all_20_0_14 = 0 |  ~ (subset(empty_set, all_0_6_6) = all_20_0_14)
% 4.86/1.81  		|
% 4.86/1.81  		| Instantiating formula (14) with all_20_0_14, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 and discharging atoms subset(all_0_9_9, all_0_6_6) = all_20_0_14, unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 4.86/1.81  		| (72) all_20_0_14 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = all_0_9_9) &  ~ (v0 = all_0_9_9) & singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0)
% 4.86/1.82  		|
% 4.86/1.82  		+-Applying beta-rule and splitting (71), into two cases.
% 4.86/1.82  		|-Branch one:
% 4.86/1.82  		| (73)  ~ (subset(empty_set, all_0_6_6) = all_20_0_14)
% 4.86/1.82  		|
% 4.86/1.82  			+-Applying beta-rule and splitting (70), into two cases.
% 4.86/1.82  			|-Branch one:
% 4.86/1.82  			| (74)  ~ (subset(all_0_9_9, all_0_9_9) = all_20_0_14)
% 4.86/1.82  			|
% 4.86/1.82  				+-Applying beta-rule and splitting (72), into two cases.
% 4.86/1.82  				|-Branch one:
% 4.93/1.82  				| (75) all_20_0_14 = 0
% 4.93/1.82  				|
% 4.93/1.82  					| Equations (75) can reduce 68 to:
% 4.93/1.82  					| (39) $false
% 4.93/1.82  					|
% 4.93/1.82  					|-The branch is then unsatisfiable
% 4.93/1.82  				|-Branch two:
% 4.93/1.82  				| (68)  ~ (all_20_0_14 = 0)
% 4.93/1.82  				| (78)  ? [v0] :  ? [v1] : ( ~ (v1 = all_0_9_9) &  ~ (v0 = all_0_9_9) & singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0)
% 4.93/1.82  				|
% 4.93/1.82  					| Instantiating (78) with all_41_0_15, all_41_1_16 yields:
% 4.93/1.82  					| (79)  ~ (all_41_0_15 = all_0_9_9) &  ~ (all_41_1_16 = all_0_9_9) & singleton(all_0_7_7) = all_41_0_15 & singleton(all_0_8_8) = all_41_1_16
% 4.93/1.82  					|
% 4.93/1.82  					| Applying alpha-rule on (79) yields:
% 4.93/1.82  					| (80)  ~ (all_41_0_15 = all_0_9_9)
% 4.93/1.82  					| (81)  ~ (all_41_1_16 = all_0_9_9)
% 4.93/1.82  					| (82) singleton(all_0_7_7) = all_41_0_15
% 4.93/1.82  					| (83) singleton(all_0_8_8) = all_41_1_16
% 4.93/1.82  					|
% 4.93/1.82  					| Instantiating formula (15) with all_0_7_7, all_41_0_15, all_0_3_3 and discharging atoms singleton(all_0_7_7) = all_41_0_15, singleton(all_0_7_7) = all_0_3_3, yields:
% 4.93/1.82  					| (84) all_41_0_15 = all_0_3_3
% 4.93/1.82  					|
% 4.93/1.82  					| Instantiating formula (15) with all_0_8_8, all_41_1_16, all_0_4_4 and discharging atoms singleton(all_0_8_8) = all_41_1_16, singleton(all_0_8_8) = all_0_4_4, yields:
% 4.93/1.82  					| (85) all_41_1_16 = all_0_4_4
% 4.93/1.82  					|
% 4.93/1.82  					| Using (69) and (74) yields:
% 4.93/1.82  					| (27)  ~ (all_0_6_6 = all_0_9_9)
% 4.93/1.82  					|
% 4.93/1.82  					| Using (69) and (73) yields:
% 4.93/1.82  					| (30)  ~ (all_0_9_9 = empty_set)
% 4.93/1.82  					|
% 4.93/1.82  					| Equations (84) can reduce 80 to:
% 4.93/1.82  					| (29)  ~ (all_0_3_3 = all_0_9_9)
% 4.93/1.82  					|
% 4.93/1.82  					| Equations (85) can reduce 81 to:
% 4.93/1.82  					| (28)  ~ (all_0_4_4 = all_0_9_9)
% 4.93/1.82  					|
% 4.93/1.82  					+-Applying beta-rule and splitting (62), into two cases.
% 4.93/1.82  					|-Branch one:
% 4.93/1.82  					| (38) all_0_9_9 = empty_set
% 4.93/1.82  					|
% 4.93/1.82  						| Equations (38) can reduce 30 to:
% 4.93/1.82  						| (39) $false
% 4.93/1.82  						|
% 4.93/1.82  						|-The branch is then unsatisfiable
% 4.93/1.82  					|-Branch two:
% 4.93/1.82  					| (30)  ~ (all_0_9_9 = empty_set)
% 4.93/1.82  					| (93) all_0_3_3 = all_0_9_9 | all_0_4_4 = all_0_9_9 | all_0_6_6 = all_0_9_9
% 4.93/1.82  					|
% 4.93/1.82  						+-Applying beta-rule and splitting (93), into two cases.
% 4.93/1.82  						|-Branch one:
% 4.93/1.82  						| (53) all_0_3_3 = all_0_9_9
% 4.93/1.82  						|
% 4.93/1.82  							| Equations (53) can reduce 29 to:
% 4.93/1.82  							| (39) $false
% 4.93/1.82  							|
% 4.93/1.82  							|-The branch is then unsatisfiable
% 4.93/1.82  						|-Branch two:
% 4.93/1.82  						| (29)  ~ (all_0_3_3 = all_0_9_9)
% 4.93/1.82  						| (97) all_0_4_4 = all_0_9_9 | all_0_6_6 = all_0_9_9
% 4.93/1.82  						|
% 4.93/1.82  							+-Applying beta-rule and splitting (97), into two cases.
% 4.93/1.82  							|-Branch one:
% 4.93/1.82  							| (58) all_0_4_4 = all_0_9_9
% 4.93/1.82  							|
% 4.93/1.82  								| Equations (58) can reduce 28 to:
% 4.93/1.82  								| (39) $false
% 4.93/1.82  								|
% 4.93/1.82  								|-The branch is then unsatisfiable
% 4.93/1.82  							|-Branch two:
% 4.93/1.82  							| (28)  ~ (all_0_4_4 = all_0_9_9)
% 4.93/1.82  							| (42) all_0_6_6 = all_0_9_9
% 4.93/1.82  							|
% 4.93/1.82  								| Equations (42) can reduce 27 to:
% 4.93/1.82  								| (39) $false
% 4.93/1.82  								|
% 4.93/1.82  								|-The branch is then unsatisfiable
% 4.93/1.82  			|-Branch two:
% 4.93/1.82  			| (103) subset(all_0_9_9, all_0_9_9) = all_20_0_14
% 4.93/1.82  			| (75) all_20_0_14 = 0
% 4.93/1.82  			|
% 4.93/1.82  				| Equations (75) can reduce 68 to:
% 4.93/1.82  				| (39) $false
% 4.93/1.82  				|
% 4.93/1.82  				|-The branch is then unsatisfiable
% 4.93/1.82  		|-Branch two:
% 4.93/1.82  		| (106) subset(empty_set, all_0_6_6) = all_20_0_14
% 4.93/1.82  		| (75) all_20_0_14 = 0
% 4.93/1.82  		|
% 4.93/1.82  			| Equations (75) can reduce 68 to:
% 4.93/1.82  			| (39) $false
% 4.93/1.82  			|
% 4.93/1.82  			|-The branch is then unsatisfiable
% 4.93/1.82  % SZS output end Proof for theBenchmark
% 4.93/1.83  
% 4.93/1.83  1234ms
%------------------------------------------------------------------------------