TSTP Solution File: SET931+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : SET931+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 03:38:27 EDT 2022

% Result   : Theorem 0.13s 0.35s
% Output   : CNFRefutation 0.13s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :    5
% Syntax   : Number of formulae    :   45 (  13 unt;   0 def)
%            Number of atoms       :  118 (  86 equ)
%            Maximal formula atoms :    5 (   2 avg)
%            Number of connectives :  156 (  83   ~;  17   |;  41   &)
%                                         (  11 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    4 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :   10 (  10 usr;   7 con; 0-2 aty)
%            Number of variables   :   64 (   0 sgn  48   !;  12   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(l46_zfmisc_1,axiom,
    ! [A,B,C] :
      ( subset(A,unordered_pair(B,C))
    <=> ~ ( A != empty_set
          & A != singleton(B)
          & A != singleton(C)
          & A != unordered_pair(B,C) ) ) ).

fof(t37_xboole_1,axiom,
    ! [A,B] :
      ( set_difference(A,B) = empty_set
    <=> subset(A,B) ) ).

fof(t75_zfmisc_1,conjecture,
    ! [A,B,C] :
      ( set_difference(A,unordered_pair(B,C)) = empty_set
    <=> ~ ( A != empty_set
          & A != singleton(B)
          & A != singleton(C)
          & A != unordered_pair(B,C) ) ) ).

fof(subgoal_0,plain,
    ! [A,B,C] :
      ( ( set_difference(A,unordered_pair(B,C)) = empty_set
        & A != empty_set
        & A != singleton(B)
        & A != singleton(C) )
     => A = unordered_pair(B,C) ),
    inference(strip,[],[t75_zfmisc_1]) ).

fof(subgoal_1,plain,
    ! [A,B,C] :
      ( ~ ( A != empty_set
          & A != singleton(B)
          & A != singleton(C)
          & A != unordered_pair(B,C) )
     => set_difference(A,unordered_pair(B,C)) = empty_set ),
    inference(strip,[],[t75_zfmisc_1]) ).

fof(negate_0_0,plain,
    ~ ! [A,B,C] :
        ( ( set_difference(A,unordered_pair(B,C)) = empty_set
          & A != empty_set
          & A != singleton(B)
          & A != singleton(C) )
       => A = unordered_pair(B,C) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ! [A,B] :
      ( set_difference(A,B) != empty_set
    <=> ~ subset(A,B) ),
    inference(canonicalize,[],[t37_xboole_1]) ).

fof(normalize_0_1,plain,
    ! [A,B] :
      ( set_difference(A,B) != empty_set
    <=> ~ subset(A,B) ),
    inference(specialize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ! [A,B] :
      ( ( set_difference(A,B) != empty_set
        | subset(A,B) )
      & ( ~ subset(A,B)
        | set_difference(A,B) = empty_set ) ),
    inference(clausify,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ! [A,B] :
      ( set_difference(A,B) != empty_set
      | subset(A,B) ),
    inference(conjunct,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    ? [A,B,C] :
      ( A != empty_set
      & A != singleton(B)
      & A != singleton(C)
      & A != unordered_pair(B,C)
      & set_difference(A,unordered_pair(B,C)) = empty_set ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_5,plain,
    ! [A,B,C] :
      ( ~ subset(A,unordered_pair(B,C))
    <=> ( A != empty_set
        & A != singleton(B)
        & A != singleton(C)
        & A != unordered_pair(B,C) ) ),
    inference(canonicalize,[],[l46_zfmisc_1]) ).

fof(normalize_0_6,plain,
    ! [A,B,C] :
      ( ~ subset(A,unordered_pair(B,C))
    <=> ( A != empty_set
        & A != singleton(B)
        & A != singleton(C)
        & A != unordered_pair(B,C) ) ),
    inference(specialize,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ? [A,B,C] :
      ( ~ subset(A,unordered_pair(B,C))
      & set_difference(A,unordered_pair(B,C)) = empty_set ),
    inference(simplify,[],[normalize_0_4,normalize_0_6]) ).

fof(normalize_0_8,plain,
    ( ~ subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C))
    & set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) = empty_set ),
    inference(skolemize,[],[normalize_0_7]) ).

fof(normalize_0_9,plain,
    set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) = empty_set,
    inference(conjunct,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ~ subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)),
    inference(conjunct,[],[normalize_0_8]) ).

cnf(refute_0_0,plain,
    ( set_difference(A,B) != empty_set
    | subset(A,B) ),
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_1,plain,
    ( set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) != empty_set
    | subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) ),
    inference(subst,[],[refute_0_0:[bind(A,$fot(skolemFOFtoCNF_A_2)),bind(B,$fot(unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)))]]) ).

cnf(refute_0_2,plain,
    set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) = empty_set,
    inference(canonicalize,[],[normalize_0_9]) ).

cnf(refute_0_3,plain,
    ( empty_set != empty_set
    | set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) != empty_set
    | set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) = empty_set ),
    introduced(tautology,[equality,[$cnf( $equal(set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)),empty_set) ),[1],$fot(empty_set)]]) ).

cnf(refute_0_4,plain,
    ( empty_set != empty_set
    | set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) = empty_set ),
    inference(resolve,[$cnf( $equal(set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)),empty_set) )],[refute_0_2,refute_0_3]) ).

cnf(refute_0_5,plain,
    ( empty_set != empty_set
    | subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) ),
    inference(resolve,[$cnf( $equal(set_difference(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)),empty_set) )],[refute_0_4,refute_0_1]) ).

cnf(refute_0_6,plain,
    empty_set = empty_set,
    introduced(tautology,[refl,[$fot(empty_set)]]) ).

cnf(refute_0_7,plain,
    subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)),
    inference(resolve,[$cnf( $equal(empty_set,empty_set) )],[refute_0_6,refute_0_5]) ).

cnf(refute_0_8,plain,
    ~ subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_9,plain,
    $false,
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_A_2,unordered_pair(skolemFOFtoCNF_B,skolemFOFtoCNF_C)) )],[refute_0_7,refute_0_8]) ).

fof(negate_1_0,plain,
    ~ ! [A,B,C] :
        ( ~ ( A != empty_set
            & A != singleton(B)
            & A != singleton(C)
            & A != unordered_pair(B,C) )
       => set_difference(A,unordered_pair(B,C)) = empty_set ),
    inference(negate,[],[subgoal_1]) ).

fof(normalize_1_0,plain,
    ? [A,B,C] :
      ( set_difference(A,unordered_pair(B,C)) != empty_set
      & ( A = empty_set
        | A = singleton(B)
        | A = singleton(C)
        | A = unordered_pair(B,C) ) ),
    inference(canonicalize,[],[negate_1_0]) ).

fof(normalize_1_1,plain,
    ! [A,B,C] :
      ( ~ subset(A,unordered_pair(B,C))
    <=> ( A != empty_set
        & A != singleton(B)
        & A != singleton(C)
        & A != unordered_pair(B,C) ) ),
    inference(canonicalize,[],[l46_zfmisc_1]) ).

fof(normalize_1_2,plain,
    ! [A,B,C] :
      ( ~ subset(A,unordered_pair(B,C))
    <=> ( A != empty_set
        & A != singleton(B)
        & A != singleton(C)
        & A != unordered_pair(B,C) ) ),
    inference(specialize,[],[normalize_1_1]) ).

fof(normalize_1_3,plain,
    ? [A,B,C] :
      ( set_difference(A,unordered_pair(B,C)) != empty_set
      & subset(A,unordered_pair(B,C)) ),
    inference(simplify,[],[normalize_1_0,normalize_1_2]) ).

fof(normalize_1_4,plain,
    ( set_difference(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) != empty_set
    & subset(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) ),
    inference(skolemize,[],[normalize_1_3]) ).

fof(normalize_1_5,plain,
    subset(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)),
    inference(conjunct,[],[normalize_1_4]) ).

fof(normalize_1_6,plain,
    ! [A,B] :
      ( set_difference(A,B) != empty_set
    <=> ~ subset(A,B) ),
    inference(canonicalize,[],[t37_xboole_1]) ).

fof(normalize_1_7,plain,
    ! [A,B] :
      ( set_difference(A,B) != empty_set
    <=> ~ subset(A,B) ),
    inference(specialize,[],[normalize_1_6]) ).

fof(normalize_1_8,plain,
    ! [A,B] :
      ( ( set_difference(A,B) != empty_set
        | subset(A,B) )
      & ( ~ subset(A,B)
        | set_difference(A,B) = empty_set ) ),
    inference(clausify,[],[normalize_1_7]) ).

fof(normalize_1_9,plain,
    ! [A,B] :
      ( ~ subset(A,B)
      | set_difference(A,B) = empty_set ),
    inference(conjunct,[],[normalize_1_8]) ).

fof(normalize_1_10,plain,
    set_difference(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) != empty_set,
    inference(conjunct,[],[normalize_1_4]) ).

cnf(refute_1_0,plain,
    subset(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)),
    inference(canonicalize,[],[normalize_1_5]) ).

cnf(refute_1_1,plain,
    ( ~ subset(A,B)
    | set_difference(A,B) = empty_set ),
    inference(canonicalize,[],[normalize_1_9]) ).

cnf(refute_1_2,plain,
    ( ~ subset(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1))
    | set_difference(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) = empty_set ),
    inference(subst,[],[refute_1_1:[bind(A,$fot(skolemFOFtoCNF_A_3)),bind(B,$fot(unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)))]]) ).

cnf(refute_1_3,plain,
    set_difference(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) = empty_set,
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) )],[refute_1_0,refute_1_2]) ).

cnf(refute_1_4,plain,
    set_difference(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)) != empty_set,
    inference(canonicalize,[],[normalize_1_10]) ).

cnf(refute_1_5,plain,
    $false,
    inference(resolve,[$cnf( $equal(set_difference(skolemFOFtoCNF_A_3,unordered_pair(skolemFOFtoCNF_B_1,skolemFOFtoCNF_C_1)),empty_set) )],[refute_1_3,refute_1_4]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET931+1 : TPTP v8.1.0. Released v3.2.0.
% 0.03/0.13  % Command  : metis --show proof --show saturation %s
% 0.13/0.34  % Computer : n015.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sun Jul 10 21:57:23 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.13/0.35  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.13/0.35  
% 0.13/0.35  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 0.13/0.36  
%------------------------------------------------------------------------------