TSTP Solution File: SET931+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET931+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:53:28 EDT 2022

% Result   : Theorem 0.72s 1.23s
% Output   : Refutation 0.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SET931+1 : TPTP v8.1.0. Released v3.2.0.
% 0.11/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n009.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Sun Jul 10 21:43:37 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.72/1.23  *** allocated 10000 integers for termspace/termends
% 0.72/1.23  *** allocated 10000 integers for clauses
% 0.72/1.23  *** allocated 10000 integers for justifications
% 0.72/1.23  Bliksem 1.12
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  Automatic Strategy Selection
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  Clauses:
% 0.72/1.23  
% 0.72/1.23  { unordered_pair( X, Y ) = unordered_pair( Y, X ) }.
% 0.72/1.23  { empty( empty_set ) }.
% 0.72/1.23  { ! subset( X, unordered_pair( Y, Z ) ), X = empty_set, ! alpha1( X, Y, Z )
% 0.72/1.23     }.
% 0.72/1.23  { ! X = empty_set, subset( X, unordered_pair( Y, Z ) ) }.
% 0.72/1.23  { alpha1( X, Y, Z ), subset( X, unordered_pair( Y, Z ) ) }.
% 0.72/1.23  { ! alpha1( X, Y, Z ), ! X = singleton( Y ) }.
% 0.72/1.23  { ! alpha1( X, Y, Z ), alpha3( X, Y, Z ) }.
% 0.72/1.23  { X = singleton( Y ), ! alpha3( X, Y, Z ), alpha1( X, Y, Z ) }.
% 0.72/1.23  { ! alpha3( X, Y, Z ), ! X = singleton( Z ) }.
% 0.72/1.23  { ! alpha3( X, Y, Z ), ! X = unordered_pair( Y, Z ) }.
% 0.72/1.23  { X = singleton( Z ), X = unordered_pair( Y, Z ), alpha3( X, Y, Z ) }.
% 0.72/1.23  { empty( skol1 ) }.
% 0.72/1.23  { ! empty( skol2 ) }.
% 0.72/1.23  { subset( X, X ) }.
% 0.72/1.23  { ! set_difference( X, Y ) = empty_set, subset( X, Y ) }.
% 0.72/1.23  { ! subset( X, Y ), set_difference( X, Y ) = empty_set }.
% 0.72/1.23  { alpha5( skol3, skol4, skol5 ), skol3 = empty_set, ! alpha2( skol3, skol4
% 0.72/1.23    , skol5 ) }.
% 0.72/1.23  { alpha5( skol3, skol4, skol5 ), ! set_difference( skol3, unordered_pair( 
% 0.72/1.23    skol4, skol5 ) ) = empty_set }.
% 0.72/1.23  { ! alpha5( X, Y, Z ), set_difference( X, unordered_pair( Y, Z ) ) = 
% 0.72/1.23    empty_set }.
% 0.72/1.23  { ! alpha5( X, Y, Z ), ! X = empty_set }.
% 0.72/1.23  { ! alpha5( X, Y, Z ), alpha2( X, Y, Z ) }.
% 0.72/1.23  { ! set_difference( X, unordered_pair( Y, Z ) ) = empty_set, X = empty_set
% 0.72/1.23    , ! alpha2( X, Y, Z ), alpha5( X, Y, Z ) }.
% 0.72/1.23  { ! alpha2( X, Y, Z ), ! X = singleton( Y ) }.
% 0.72/1.23  { ! alpha2( X, Y, Z ), alpha4( X, Y, Z ) }.
% 0.72/1.23  { X = singleton( Y ), ! alpha4( X, Y, Z ), alpha2( X, Y, Z ) }.
% 0.72/1.23  { ! alpha4( X, Y, Z ), ! X = singleton( Z ) }.
% 0.72/1.23  { ! alpha4( X, Y, Z ), ! X = unordered_pair( Y, Z ) }.
% 0.72/1.23  { X = singleton( Z ), X = unordered_pair( Y, Z ), alpha4( X, Y, Z ) }.
% 0.72/1.23  
% 0.72/1.23  percentage equality = 0.389831, percentage horn = 0.750000
% 0.72/1.23  This is a problem with some equality
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  Options Used:
% 0.72/1.23  
% 0.72/1.23  useres =            1
% 0.72/1.23  useparamod =        1
% 0.72/1.23  useeqrefl =         1
% 0.72/1.23  useeqfact =         1
% 0.72/1.23  usefactor =         1
% 0.72/1.23  usesimpsplitting =  0
% 0.72/1.23  usesimpdemod =      5
% 0.72/1.23  usesimpres =        3
% 0.72/1.23  
% 0.72/1.23  resimpinuse      =  1000
% 0.72/1.23  resimpclauses =     20000
% 0.72/1.23  substype =          eqrewr
% 0.72/1.23  backwardsubs =      1
% 0.72/1.23  selectoldest =      5
% 0.72/1.23  
% 0.72/1.23  litorderings [0] =  split
% 0.72/1.23  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.72/1.23  
% 0.72/1.23  termordering =      kbo
% 0.72/1.23  
% 0.72/1.23  litapriori =        0
% 0.72/1.23  termapriori =       1
% 0.72/1.23  litaposteriori =    0
% 0.72/1.23  termaposteriori =   0
% 0.72/1.23  demodaposteriori =  0
% 0.72/1.23  ordereqreflfact =   0
% 0.72/1.23  
% 0.72/1.23  litselect =         negord
% 0.72/1.23  
% 0.72/1.23  maxweight =         15
% 0.72/1.23  maxdepth =          30000
% 0.72/1.23  maxlength =         115
% 0.72/1.23  maxnrvars =         195
% 0.72/1.23  excuselevel =       1
% 0.72/1.23  increasemaxweight = 1
% 0.72/1.23  
% 0.72/1.23  maxselected =       10000000
% 0.72/1.23  maxnrclauses =      10000000
% 0.72/1.23  
% 0.72/1.23  showgenerated =    0
% 0.72/1.23  showkept =         0
% 0.72/1.23  showselected =     0
% 0.72/1.23  showdeleted =      0
% 0.72/1.23  showresimp =       1
% 0.72/1.23  showstatus =       2000
% 0.72/1.23  
% 0.72/1.23  prologoutput =     0
% 0.72/1.23  nrgoals =          5000000
% 0.72/1.23  totalproof =       1
% 0.72/1.23  
% 0.72/1.23  Symbols occurring in the translation:
% 0.72/1.23  
% 0.72/1.23  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.72/1.23  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.72/1.23  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.72/1.23  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.23  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.23  unordered_pair  [37, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.72/1.23  empty_set  [38, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.72/1.23  empty  [39, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.72/1.23  subset  [41, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.72/1.23  singleton  [42, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.72/1.23  set_difference  [43, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.72/1.23  alpha1  [44, 3]      (w:1, o:49, a:1, s:1, b:1), 
% 0.72/1.23  alpha2  [45, 3]      (w:1, o:50, a:1, s:1, b:1), 
% 0.72/1.23  alpha3  [46, 3]      (w:1, o:51, a:1, s:1, b:1), 
% 0.72/1.23  alpha4  [47, 3]      (w:1, o:52, a:1, s:1, b:1), 
% 0.72/1.23  alpha5  [48, 3]      (w:1, o:53, a:1, s:1, b:1), 
% 0.72/1.23  skol1  [49, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.72/1.23  skol2  [50, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.72/1.23  skol3  [51, 0]      (w:1, o:12, a:1, s:1, b:1), 
% 0.72/1.23  skol4  [52, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.72/1.23  skol5  [53, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  Starting Search:
% 0.72/1.23  
% 0.72/1.23  *** allocated 15000 integers for clauses
% 0.72/1.23  *** allocated 22500 integers for clauses
% 0.72/1.23  *** allocated 33750 integers for clauses
% 0.72/1.23  *** allocated 15000 integers for termspace/termends
% 0.72/1.23  *** allocated 50625 integers for clauses
% 0.72/1.23  *** allocated 22500 integers for termspace/termends
% 0.72/1.23  Resimplifying inuse:
% 0.72/1.23  Done
% 0.72/1.23  
% 0.72/1.23  *** allocated 75937 integers for clauses
% 0.72/1.23  
% 0.72/1.23  Bliksems!, er is een bewijs:
% 0.72/1.23  % SZS status Theorem
% 0.72/1.23  % SZS output start Refutation
% 0.72/1.23  
% 0.72/1.23  (2) {G0,W12,D3,L3,V3,M3} I { ! subset( X, unordered_pair( Y, Z ) ), X = 
% 0.72/1.23    empty_set, ! alpha1( X, Y, Z ) }.
% 0.72/1.23  (3) {G0,W8,D3,L2,V3,M2} I { ! X = empty_set, subset( X, unordered_pair( Y, 
% 0.72/1.23    Z ) ) }.
% 0.72/1.23  (4) {G0,W9,D3,L2,V3,M2} I { alpha1( X, Y, Z ), subset( X, unordered_pair( Y
% 0.72/1.23    , Z ) ) }.
% 0.72/1.23  (5) {G0,W8,D3,L2,V3,M2} I { ! alpha1( X, Y, Z ), ! X = singleton( Y ) }.
% 0.72/1.23  (6) {G0,W8,D2,L2,V3,M2} I { ! alpha1( X, Y, Z ), alpha3( X, Y, Z ) }.
% 0.72/1.23  (7) {G0,W12,D3,L3,V3,M3} I { X = singleton( Y ), ! alpha3( X, Y, Z ), 
% 0.72/1.23    alpha1( X, Y, Z ) }.
% 0.72/1.23  (8) {G0,W8,D3,L2,V3,M2} I { ! alpha3( X, Y, Z ), ! X = singleton( Z ) }.
% 0.72/1.23  (10) {G0,W13,D3,L3,V3,M3} I { X = singleton( Z ), X = unordered_pair( Y, Z
% 0.72/1.23     ), alpha3( X, Y, Z ) }.
% 0.72/1.23  (13) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.72/1.23  (14) {G0,W8,D3,L2,V2,M2} I { ! set_difference( X, Y ) ==> empty_set, subset
% 0.72/1.23    ( X, Y ) }.
% 0.72/1.23  (15) {G0,W8,D3,L2,V2,M2} I { ! subset( X, Y ), set_difference( X, Y ) ==> 
% 0.72/1.23    empty_set }.
% 0.72/1.23  (16) {G0,W11,D2,L3,V0,M3} I { alpha5( skol3, skol4, skol5 ), skol3 ==> 
% 0.72/1.23    empty_set, ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  (17) {G0,W11,D4,L2,V0,M2} I { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    set_difference( skol3, unordered_pair( skol4, skol5 ) ) ==> empty_set }.
% 0.72/1.23  (18) {G0,W11,D4,L2,V3,M2} I { ! alpha5( X, Y, Z ), set_difference( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) ==> empty_set }.
% 0.72/1.23  (19) {G0,W7,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), ! X = empty_set }.
% 0.72/1.23  (20) {G0,W8,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), alpha2( X, Y, Z ) }.
% 0.72/1.23  (22) {G0,W8,D3,L2,V3,M2} I { ! alpha2( X, Y, Z ), ! X = singleton( Y ) }.
% 0.72/1.23  (23) {G0,W8,D2,L2,V3,M2} I { ! alpha2( X, Y, Z ), alpha4( X, Y, Z ) }.
% 0.72/1.23  (24) {G0,W12,D3,L3,V3,M3} I { X = singleton( Y ), ! alpha4( X, Y, Z ), 
% 0.72/1.23    alpha2( X, Y, Z ) }.
% 0.72/1.23  (25) {G0,W8,D3,L2,V3,M2} I { ! alpha4( X, Y, Z ), ! X = singleton( Z ) }.
% 0.72/1.23  (26) {G0,W9,D3,L2,V3,M2} I { ! alpha4( X, Y, Z ), ! X = unordered_pair( Y, 
% 0.72/1.23    Z ) }.
% 0.72/1.23  (27) {G0,W13,D3,L3,V3,M3} I { X = singleton( Z ), X = unordered_pair( Y, Z
% 0.72/1.23     ), alpha4( X, Y, Z ) }.
% 0.72/1.23  (28) {G1,W5,D3,L1,V2,M1} Q(3) { subset( empty_set, unordered_pair( X, Y ) )
% 0.72/1.23     }.
% 0.72/1.23  (34) {G1,W4,D2,L1,V2,M1} Q(19) { ! alpha5( empty_set, X, Y ) }.
% 0.72/1.23  (48) {G1,W13,D3,L3,V5,M3} R(19,2) { ! alpha5( X, Y, Z ), ! subset( X, 
% 0.72/1.23    unordered_pair( T, U ) ), ! alpha1( X, T, U ) }.
% 0.72/1.23  (56) {G1,W8,D2,L2,V3,M2} R(20,23) { ! alpha5( X, Y, Z ), alpha4( X, Y, Z )
% 0.72/1.23     }.
% 0.72/1.23  (63) {G1,W9,D3,L2,V3,M2} R(5,4) { ! X = singleton( Y ), subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  (92) {G2,W8,D3,L2,V3,M2} R(25,56) { ! X = singleton( Y ), ! alpha5( X, Z, Y
% 0.72/1.23     ) }.
% 0.72/1.23  (104) {G1,W8,D3,L2,V3,M2} R(8,6) { ! X = singleton( Y ), ! alpha1( X, Z, Y
% 0.72/1.23     ) }.
% 0.72/1.23  (113) {G2,W9,D3,L2,V3,M2} R(104,4) { ! X = singleton( Y ), subset( X, 
% 0.72/1.23    unordered_pair( Z, Y ) ) }.
% 0.72/1.23  (116) {G1,W8,D3,L2,V3,M2} R(22,20) { ! X = singleton( Y ), ! alpha5( X, Y, 
% 0.72/1.23    Z ) }.
% 0.72/1.23  (136) {G2,W7,D4,L1,V2,M1} R(15,28) { set_difference( empty_set, 
% 0.72/1.23    unordered_pair( X, Y ) ) ==> empty_set }.
% 0.72/1.23  (137) {G1,W5,D3,L1,V1,M1} R(15,13) { set_difference( X, X ) ==> empty_set
% 0.72/1.23     }.
% 0.72/1.23  (309) {G1,W9,D3,L2,V0,M2} R(17,15) { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    subset( skol3, unordered_pair( skol4, skol5 ) ) }.
% 0.72/1.23  (315) {G3,W8,D2,L2,V0,M2} P(16,17);d(136);q;r(34) { alpha5( skol3, skol4, 
% 0.72/1.23    skol5 ), ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  (333) {G3,W9,D3,L2,V2,M2} P(2,17);d(136);q;r(34) { ! subset( skol3, 
% 0.72/1.23    unordered_pair( X, Y ) ), ! alpha1( skol3, X, Y ) }.
% 0.72/1.23  (351) {G1,W9,D3,L2,V3,M2} R(18,14) { ! alpha5( X, Y, Z ), subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  (536) {G2,W9,D3,L2,V3,M2} R(26,56) { ! X = unordered_pair( Y, Z ), ! alpha5
% 0.72/1.23    ( X, Y, Z ) }.
% 0.72/1.23  (754) {G4,W8,D2,L2,V2,M2} R(333,351) { ! alpha1( skol3, X, Y ), ! alpha5( 
% 0.72/1.23    skol3, X, Y ) }.
% 0.72/1.23  (782) {G5,W8,D2,L2,V0,M2} R(754,315) { ! alpha1( skol3, skol4, skol5 ), ! 
% 0.72/1.23    alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  (965) {G2,W4,D3,L1,V0,M1} R(309,63);r(116) { ! singleton( skol4 ) ==> skol3
% 0.72/1.23     }.
% 0.72/1.23  (968) {G3,W4,D3,L1,V0,M1} R(309,113);r(92) { ! singleton( skol5 ) ==> skol3
% 0.72/1.23     }.
% 0.72/1.23  (993) {G3,W11,D2,L3,V2,M3} P(24,965) { ! X = skol3, ! alpha4( X, skol4, Y )
% 0.72/1.23    , alpha2( X, skol4, Y ) }.
% 0.72/1.23  (1004) {G3,W11,D2,L3,V2,M3} P(7,965) { ! X = skol3, ! alpha3( X, skol4, Y )
% 0.72/1.23    , alpha1( X, skol4, Y ) }.
% 0.72/1.23  (1007) {G4,W8,D2,L2,V1,M2} Q(1004) { ! alpha3( skol3, skol4, X ), alpha1( 
% 0.72/1.23    skol3, skol4, X ) }.
% 0.72/1.23  (1009) {G4,W8,D2,L2,V1,M2} Q(993) { ! alpha4( skol3, skol4, X ), alpha2( 
% 0.72/1.23    skol3, skol4, X ) }.
% 0.72/1.23  (1045) {G2,W12,D2,L3,V5,M3} R(48,351) { ! alpha5( X, Y, Z ), ! alpha1( X, T
% 0.72/1.23    , U ), ! alpha5( X, T, U ) }.
% 0.72/1.23  (1048) {G3,W8,D2,L2,V3,M2} F(1045) { ! alpha5( X, Y, Z ), ! alpha1( X, Y, Z
% 0.72/1.23     ) }.
% 0.72/1.23  (1157) {G5,W13,D3,L3,V1,M3} R(1009,27) { alpha2( skol3, skol4, X ), 
% 0.72/1.23    singleton( X ) ==> skol3, unordered_pair( skol4, X ) ==> skol3 }.
% 0.72/1.23  (1159) {G5,W8,D2,L2,V1,M2} R(1007,1048) { ! alpha3( skol3, skol4, X ), ! 
% 0.72/1.23    alpha5( skol3, skol4, X ) }.
% 0.72/1.23  (1166) {G6,W8,D2,L2,V0,M2} R(1007,782) { ! alpha3( skol3, skol4, skol5 ), !
% 0.72/1.23     alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  (1176) {G6,W8,D3,L2,V1,M2} R(1159,10);r(536) { ! alpha5( skol3, skol4, X )
% 0.72/1.23    , singleton( X ) ==> skol3 }.
% 0.72/1.23  (1189) {G7,W9,D3,L2,V0,M2} R(1166,10);r(1157) { singleton( skol5 ) ==> 
% 0.72/1.23    skol3, unordered_pair( skol4, skol5 ) ==> skol3 }.
% 0.72/1.23  (1383) {G8,W0,D0,L0,V0,M0} R(1176,17);d(1189);d(137);q;r(968) {  }.
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  % SZS output end Refutation
% 0.72/1.23  found a proof!
% 0.72/1.23  
% 0.72/1.23  *** allocated 33750 integers for termspace/termends
% 0.72/1.23  
% 0.72/1.23  Unprocessed initial clauses:
% 0.72/1.23  
% 0.72/1.23  (1385) {G0,W7,D3,L1,V2,M1}  { unordered_pair( X, Y ) = unordered_pair( Y, X
% 0.72/1.23     ) }.
% 0.72/1.23  (1386) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.72/1.23  (1387) {G0,W12,D3,L3,V3,M3}  { ! subset( X, unordered_pair( Y, Z ) ), X = 
% 0.72/1.23    empty_set, ! alpha1( X, Y, Z ) }.
% 0.72/1.23  (1388) {G0,W8,D3,L2,V3,M2}  { ! X = empty_set, subset( X, unordered_pair( Y
% 0.72/1.23    , Z ) ) }.
% 0.72/1.23  (1389) {G0,W9,D3,L2,V3,M2}  { alpha1( X, Y, Z ), subset( X, unordered_pair
% 0.72/1.23    ( Y, Z ) ) }.
% 0.72/1.23  (1390) {G0,W8,D3,L2,V3,M2}  { ! alpha1( X, Y, Z ), ! X = singleton( Y ) }.
% 0.72/1.23  (1391) {G0,W8,D2,L2,V3,M2}  { ! alpha1( X, Y, Z ), alpha3( X, Y, Z ) }.
% 0.72/1.23  (1392) {G0,W12,D3,L3,V3,M3}  { X = singleton( Y ), ! alpha3( X, Y, Z ), 
% 0.72/1.23    alpha1( X, Y, Z ) }.
% 0.72/1.23  (1393) {G0,W8,D3,L2,V3,M2}  { ! alpha3( X, Y, Z ), ! X = singleton( Z ) }.
% 0.72/1.23  (1394) {G0,W9,D3,L2,V3,M2}  { ! alpha3( X, Y, Z ), ! X = unordered_pair( Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  (1395) {G0,W13,D3,L3,V3,M3}  { X = singleton( Z ), X = unordered_pair( Y, Z
% 0.72/1.23     ), alpha3( X, Y, Z ) }.
% 0.72/1.23  (1396) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.72/1.23  (1397) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.72/1.23  (1398) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.72/1.23  (1399) {G0,W8,D3,L2,V2,M2}  { ! set_difference( X, Y ) = empty_set, subset
% 0.72/1.23    ( X, Y ) }.
% 0.72/1.23  (1400) {G0,W8,D3,L2,V2,M2}  { ! subset( X, Y ), set_difference( X, Y ) = 
% 0.72/1.23    empty_set }.
% 0.72/1.23  (1401) {G0,W11,D2,L3,V0,M3}  { alpha5( skol3, skol4, skol5 ), skol3 = 
% 0.72/1.23    empty_set, ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  (1402) {G0,W11,D4,L2,V0,M2}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    set_difference( skol3, unordered_pair( skol4, skol5 ) ) = empty_set }.
% 0.72/1.23  (1403) {G0,W11,D4,L2,V3,M2}  { ! alpha5( X, Y, Z ), set_difference( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) = empty_set }.
% 0.72/1.23  (1404) {G0,W7,D2,L2,V3,M2}  { ! alpha5( X, Y, Z ), ! X = empty_set }.
% 0.72/1.23  (1405) {G0,W8,D2,L2,V3,M2}  { ! alpha5( X, Y, Z ), alpha2( X, Y, Z ) }.
% 0.72/1.23  (1406) {G0,W18,D4,L4,V3,M4}  { ! set_difference( X, unordered_pair( Y, Z )
% 0.72/1.23     ) = empty_set, X = empty_set, ! alpha2( X, Y, Z ), alpha5( X, Y, Z ) }.
% 0.72/1.23  (1407) {G0,W8,D3,L2,V3,M2}  { ! alpha2( X, Y, Z ), ! X = singleton( Y ) }.
% 0.72/1.23  (1408) {G0,W8,D2,L2,V3,M2}  { ! alpha2( X, Y, Z ), alpha4( X, Y, Z ) }.
% 0.72/1.23  (1409) {G0,W12,D3,L3,V3,M3}  { X = singleton( Y ), ! alpha4( X, Y, Z ), 
% 0.72/1.23    alpha2( X, Y, Z ) }.
% 0.72/1.23  (1410) {G0,W8,D3,L2,V3,M2}  { ! alpha4( X, Y, Z ), ! X = singleton( Z ) }.
% 0.72/1.23  (1411) {G0,W9,D3,L2,V3,M2}  { ! alpha4( X, Y, Z ), ! X = unordered_pair( Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  (1412) {G0,W13,D3,L3,V3,M3}  { X = singleton( Z ), X = unordered_pair( Y, Z
% 0.72/1.23     ), alpha4( X, Y, Z ) }.
% 0.72/1.23  
% 0.72/1.23  
% 0.72/1.23  Total Proof:
% 0.72/1.23  
% 0.72/1.23  subsumption: (2) {G0,W12,D3,L3,V3,M3} I { ! subset( X, unordered_pair( Y, Z
% 0.72/1.23     ) ), X = empty_set, ! alpha1( X, Y, Z ) }.
% 0.72/1.23  parent0: (1387) {G0,W12,D3,L3,V3,M3}  { ! subset( X, unordered_pair( Y, Z )
% 0.72/1.23     ), X = empty_set, ! alpha1( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (3) {G0,W8,D3,L2,V3,M2} I { ! X = empty_set, subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  parent0: (1388) {G0,W8,D3,L2,V3,M2}  { ! X = empty_set, subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (4) {G0,W9,D3,L2,V3,M2} I { alpha1( X, Y, Z ), subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  parent0: (1389) {G0,W9,D3,L2,V3,M2}  { alpha1( X, Y, Z ), subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (5) {G0,W8,D3,L2,V3,M2} I { ! alpha1( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Y ) }.
% 0.72/1.23  parent0: (1390) {G0,W8,D3,L2,V3,M2}  { ! alpha1( X, Y, Z ), ! X = singleton
% 0.72/1.23    ( Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (6) {G0,W8,D2,L2,V3,M2} I { ! alpha1( X, Y, Z ), alpha3( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0: (1391) {G0,W8,D2,L2,V3,M2}  { ! alpha1( X, Y, Z ), alpha3( X, Y, Z
% 0.72/1.23     ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (7) {G0,W12,D3,L3,V3,M3} I { X = singleton( Y ), ! alpha3( X, 
% 0.72/1.23    Y, Z ), alpha1( X, Y, Z ) }.
% 0.72/1.23  parent0: (1392) {G0,W12,D3,L3,V3,M3}  { X = singleton( Y ), ! alpha3( X, Y
% 0.72/1.23    , Z ), alpha1( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (8) {G0,W8,D3,L2,V3,M2} I { ! alpha3( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Z ) }.
% 0.72/1.23  parent0: (1393) {G0,W8,D3,L2,V3,M2}  { ! alpha3( X, Y, Z ), ! X = singleton
% 0.72/1.23    ( Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (10) {G0,W13,D3,L3,V3,M3} I { X = singleton( Z ), X = 
% 0.72/1.23    unordered_pair( Y, Z ), alpha3( X, Y, Z ) }.
% 0.72/1.23  parent0: (1395) {G0,W13,D3,L3,V3,M3}  { X = singleton( Z ), X = 
% 0.72/1.23    unordered_pair( Y, Z ), alpha3( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (13) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.72/1.23  parent0: (1398) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (14) {G0,W8,D3,L2,V2,M2} I { ! set_difference( X, Y ) ==> 
% 0.72/1.23    empty_set, subset( X, Y ) }.
% 0.72/1.23  parent0: (1399) {G0,W8,D3,L2,V2,M2}  { ! set_difference( X, Y ) = empty_set
% 0.72/1.23    , subset( X, Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (15) {G0,W8,D3,L2,V2,M2} I { ! subset( X, Y ), set_difference
% 0.72/1.23    ( X, Y ) ==> empty_set }.
% 0.72/1.23  parent0: (1400) {G0,W8,D3,L2,V2,M2}  { ! subset( X, Y ), set_difference( X
% 0.72/1.23    , Y ) = empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (16) {G0,W11,D2,L3,V0,M3} I { alpha5( skol3, skol4, skol5 ), 
% 0.72/1.23    skol3 ==> empty_set, ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  parent0: (1401) {G0,W11,D2,L3,V0,M3}  { alpha5( skol3, skol4, skol5 ), 
% 0.72/1.23    skol3 = empty_set, ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (17) {G0,W11,D4,L2,V0,M2} I { alpha5( skol3, skol4, skol5 ), !
% 0.72/1.23     set_difference( skol3, unordered_pair( skol4, skol5 ) ) ==> empty_set
% 0.72/1.23     }.
% 0.72/1.23  parent0: (1402) {G0,W11,D4,L2,V0,M2}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    set_difference( skol3, unordered_pair( skol4, skol5 ) ) = empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (18) {G0,W11,D4,L2,V3,M2} I { ! alpha5( X, Y, Z ), 
% 0.72/1.23    set_difference( X, unordered_pair( Y, Z ) ) ==> empty_set }.
% 0.72/1.23  parent0: (1403) {G0,W11,D4,L2,V3,M2}  { ! alpha5( X, Y, Z ), set_difference
% 0.72/1.23    ( X, unordered_pair( Y, Z ) ) = empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (19) {G0,W7,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), ! X = 
% 0.72/1.23    empty_set }.
% 0.72/1.23  parent0: (1404) {G0,W7,D2,L2,V3,M2}  { ! alpha5( X, Y, Z ), ! X = empty_set
% 0.72/1.23     }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (20) {G0,W8,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), alpha2( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0: (1405) {G0,W8,D2,L2,V3,M2}  { ! alpha5( X, Y, Z ), alpha2( X, Y, Z
% 0.72/1.23     ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (22) {G0,W8,D3,L2,V3,M2} I { ! alpha2( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Y ) }.
% 0.72/1.23  parent0: (1407) {G0,W8,D3,L2,V3,M2}  { ! alpha2( X, Y, Z ), ! X = singleton
% 0.72/1.23    ( Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (23) {G0,W8,D2,L2,V3,M2} I { ! alpha2( X, Y, Z ), alpha4( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0: (1408) {G0,W8,D2,L2,V3,M2}  { ! alpha2( X, Y, Z ), alpha4( X, Y, Z
% 0.72/1.23     ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (24) {G0,W12,D3,L3,V3,M3} I { X = singleton( Y ), ! alpha4( X
% 0.72/1.23    , Y, Z ), alpha2( X, Y, Z ) }.
% 0.72/1.23  parent0: (1409) {G0,W12,D3,L3,V3,M3}  { X = singleton( Y ), ! alpha4( X, Y
% 0.72/1.23    , Z ), alpha2( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (25) {G0,W8,D3,L2,V3,M2} I { ! alpha4( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Z ) }.
% 0.72/1.23  parent0: (1410) {G0,W8,D3,L2,V3,M2}  { ! alpha4( X, Y, Z ), ! X = singleton
% 0.72/1.23    ( Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (26) {G0,W9,D3,L2,V3,M2} I { ! alpha4( X, Y, Z ), ! X = 
% 0.72/1.23    unordered_pair( Y, Z ) }.
% 0.72/1.23  parent0: (1411) {G0,W9,D3,L2,V3,M2}  { ! alpha4( X, Y, Z ), ! X = 
% 0.72/1.23    unordered_pair( Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (27) {G0,W13,D3,L3,V3,M3} I { X = singleton( Z ), X = 
% 0.72/1.23    unordered_pair( Y, Z ), alpha4( X, Y, Z ) }.
% 0.72/1.23  parent0: (1412) {G0,W13,D3,L3,V3,M3}  { X = singleton( Z ), X = 
% 0.72/1.23    unordered_pair( Y, Z ), alpha4( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1667) {G0,W8,D3,L2,V3,M2}  { ! empty_set = X, subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  parent0[0]: (3) {G0,W8,D3,L2,V3,M2} I { ! X = empty_set, subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqrefl: (1668) {G0,W5,D3,L1,V2,M1}  { subset( empty_set, unordered_pair( X
% 0.72/1.23    , Y ) ) }.
% 0.72/1.23  parent0[0]: (1667) {G0,W8,D3,L2,V3,M2}  { ! empty_set = X, subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := empty_set
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (28) {G1,W5,D3,L1,V2,M1} Q(3) { subset( empty_set, 
% 0.72/1.23    unordered_pair( X, Y ) ) }.
% 0.72/1.23  parent0: (1668) {G0,W5,D3,L1,V2,M1}  { subset( empty_set, unordered_pair( X
% 0.72/1.23    , Y ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1669) {G0,W7,D2,L2,V3,M2}  { ! empty_set = X, ! alpha5( X, Y, Z )
% 0.72/1.23     }.
% 0.72/1.23  parent0[1]: (19) {G0,W7,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), ! X = 
% 0.72/1.23    empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqrefl: (1670) {G0,W4,D2,L1,V2,M1}  { ! alpha5( empty_set, X, Y ) }.
% 0.72/1.23  parent0[0]: (1669) {G0,W7,D2,L2,V3,M2}  { ! empty_set = X, ! alpha5( X, Y, 
% 0.72/1.23    Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := empty_set
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (34) {G1,W4,D2,L1,V2,M1} Q(19) { ! alpha5( empty_set, X, Y )
% 0.72/1.23     }.
% 0.72/1.23  parent0: (1670) {G0,W4,D2,L1,V2,M1}  { ! alpha5( empty_set, X, Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1671) {G0,W7,D2,L2,V3,M2}  { ! empty_set = X, ! alpha5( X, Y, Z )
% 0.72/1.23     }.
% 0.72/1.23  parent0[1]: (19) {G0,W7,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), ! X = 
% 0.72/1.23    empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1672) {G0,W12,D3,L3,V3,M3}  { empty_set = X, ! subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ), ! alpha1( X, Y, Z ) }.
% 0.72/1.23  parent0[1]: (2) {G0,W12,D3,L3,V3,M3} I { ! subset( X, unordered_pair( Y, Z
% 0.72/1.23     ) ), X = empty_set, ! alpha1( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1673) {G1,W13,D3,L3,V5,M3}  { ! alpha5( X, Y, Z ), ! subset( X
% 0.72/1.23    , unordered_pair( T, U ) ), ! alpha1( X, T, U ) }.
% 0.72/1.23  parent0[0]: (1671) {G0,W7,D2,L2,V3,M2}  { ! empty_set = X, ! alpha5( X, Y, 
% 0.72/1.23    Z ) }.
% 0.72/1.23  parent1[0]: (1672) {G0,W12,D3,L3,V3,M3}  { empty_set = X, ! subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ), ! alpha1( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := X
% 0.72/1.23     Y := T
% 0.72/1.23     Z := U
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (48) {G1,W13,D3,L3,V5,M3} R(19,2) { ! alpha5( X, Y, Z ), ! 
% 0.72/1.23    subset( X, unordered_pair( T, U ) ), ! alpha1( X, T, U ) }.
% 0.72/1.23  parent0: (1673) {G1,W13,D3,L3,V5,M3}  { ! alpha5( X, Y, Z ), ! subset( X, 
% 0.72/1.23    unordered_pair( T, U ) ), ! alpha1( X, T, U ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23     T := T
% 0.72/1.23     U := U
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23     2 ==> 2
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1674) {G1,W8,D2,L2,V3,M2}  { alpha4( X, Y, Z ), ! alpha5( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0[0]: (23) {G0,W8,D2,L2,V3,M2} I { ! alpha2( X, Y, Z ), alpha4( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent1[1]: (20) {G0,W8,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), alpha2( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (56) {G1,W8,D2,L2,V3,M2} R(20,23) { ! alpha5( X, Y, Z ), 
% 0.72/1.23    alpha4( X, Y, Z ) }.
% 0.72/1.23  parent0: (1674) {G1,W8,D2,L2,V3,M2}  { alpha4( X, Y, Z ), ! alpha5( X, Y, Z
% 0.72/1.23     ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 1
% 0.72/1.23     1 ==> 0
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1675) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha1( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0[1]: (5) {G0,W8,D3,L2,V3,M2} I { ! alpha1( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1676) {G1,W9,D3,L2,V3,M2}  { ! singleton( X ) = Y, subset( Y, 
% 0.72/1.23    unordered_pair( X, Z ) ) }.
% 0.72/1.23  parent0[1]: (1675) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha1( X
% 0.72/1.23    , Y, Z ) }.
% 0.72/1.23  parent1[0]: (4) {G0,W9,D3,L2,V3,M2} I { alpha1( X, Y, Z ), subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1677) {G1,W9,D3,L2,V3,M2}  { ! Y = singleton( X ), subset( Y, 
% 0.72/1.23    unordered_pair( X, Z ) ) }.
% 0.72/1.23  parent0[0]: (1676) {G1,W9,D3,L2,V3,M2}  { ! singleton( X ) = Y, subset( Y, 
% 0.72/1.23    unordered_pair( X, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (63) {G1,W9,D3,L2,V3,M2} R(5,4) { ! X = singleton( Y ), subset
% 0.72/1.23    ( X, unordered_pair( Y, Z ) ) }.
% 0.72/1.23  parent0: (1677) {G1,W9,D3,L2,V3,M2}  { ! Y = singleton( X ), subset( Y, 
% 0.72/1.23    unordered_pair( X, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1678) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha4( X, Z
% 0.72/1.23    , Y ) }.
% 0.72/1.23  parent0[1]: (25) {G0,W8,D3,L2,V3,M2} I { ! alpha4( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Z
% 0.72/1.23     Z := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1679) {G1,W8,D3,L2,V3,M2}  { ! singleton( X ) = Y, ! alpha5( Y
% 0.72/1.23    , Z, X ) }.
% 0.72/1.23  parent0[1]: (1678) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha4( X
% 0.72/1.23    , Z, Y ) }.
% 0.72/1.23  parent1[1]: (56) {G1,W8,D2,L2,V3,M2} R(20,23) { ! alpha5( X, Y, Z ), alpha4
% 0.72/1.23    ( X, Y, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := Z
% 0.72/1.23     Z := X
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1680) {G1,W8,D3,L2,V3,M2}  { ! Y = singleton( X ), ! alpha5( Y, Z
% 0.72/1.23    , X ) }.
% 0.72/1.23  parent0[0]: (1679) {G1,W8,D3,L2,V3,M2}  { ! singleton( X ) = Y, ! alpha5( Y
% 0.72/1.23    , Z, X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (92) {G2,W8,D3,L2,V3,M2} R(25,56) { ! X = singleton( Y ), ! 
% 0.72/1.23    alpha5( X, Z, Y ) }.
% 0.72/1.23  parent0: (1680) {G1,W8,D3,L2,V3,M2}  { ! Y = singleton( X ), ! alpha5( Y, Z
% 0.72/1.23    , X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1681) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha3( X, Z
% 0.72/1.23    , Y ) }.
% 0.72/1.23  parent0[1]: (8) {G0,W8,D3,L2,V3,M2} I { ! alpha3( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Z
% 0.72/1.23     Z := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1682) {G1,W8,D3,L2,V3,M2}  { ! singleton( X ) = Y, ! alpha1( Y
% 0.72/1.23    , Z, X ) }.
% 0.72/1.23  parent0[1]: (1681) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha3( X
% 0.72/1.23    , Z, Y ) }.
% 0.72/1.23  parent1[1]: (6) {G0,W8,D2,L2,V3,M2} I { ! alpha1( X, Y, Z ), alpha3( X, Y, 
% 0.72/1.23    Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := Z
% 0.72/1.23     Z := X
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1683) {G1,W8,D3,L2,V3,M2}  { ! Y = singleton( X ), ! alpha1( Y, Z
% 0.72/1.23    , X ) }.
% 0.72/1.23  parent0[0]: (1682) {G1,W8,D3,L2,V3,M2}  { ! singleton( X ) = Y, ! alpha1( Y
% 0.72/1.23    , Z, X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (104) {G1,W8,D3,L2,V3,M2} R(8,6) { ! X = singleton( Y ), ! 
% 0.72/1.23    alpha1( X, Z, Y ) }.
% 0.72/1.23  parent0: (1683) {G1,W8,D3,L2,V3,M2}  { ! Y = singleton( X ), ! alpha1( Y, Z
% 0.72/1.23    , X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1684) {G1,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha1( X, Z
% 0.72/1.23    , Y ) }.
% 0.72/1.23  parent0[0]: (104) {G1,W8,D3,L2,V3,M2} R(8,6) { ! X = singleton( Y ), ! 
% 0.72/1.23    alpha1( X, Z, Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1685) {G1,W9,D3,L2,V3,M2}  { ! singleton( X ) = Y, subset( Y, 
% 0.72/1.23    unordered_pair( Z, X ) ) }.
% 0.72/1.23  parent0[1]: (1684) {G1,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha1( X
% 0.72/1.23    , Z, Y ) }.
% 0.72/1.23  parent1[0]: (4) {G0,W9,D3,L2,V3,M2} I { alpha1( X, Y, Z ), subset( X, 
% 0.72/1.23    unordered_pair( Y, Z ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := Z
% 0.72/1.23     Z := X
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1686) {G1,W9,D3,L2,V3,M2}  { ! Y = singleton( X ), subset( Y, 
% 0.72/1.23    unordered_pair( Z, X ) ) }.
% 0.72/1.23  parent0[0]: (1685) {G1,W9,D3,L2,V3,M2}  { ! singleton( X ) = Y, subset( Y, 
% 0.72/1.23    unordered_pair( Z, X ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (113) {G2,W9,D3,L2,V3,M2} R(104,4) { ! X = singleton( Y ), 
% 0.72/1.23    subset( X, unordered_pair( Z, Y ) ) }.
% 0.72/1.23  parent0: (1686) {G1,W9,D3,L2,V3,M2}  { ! Y = singleton( X ), subset( Y, 
% 0.72/1.23    unordered_pair( Z, X ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1687) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha2( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0[1]: (22) {G0,W8,D3,L2,V3,M2} I { ! alpha2( X, Y, Z ), ! X = 
% 0.72/1.23    singleton( Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1688) {G1,W8,D3,L2,V3,M2}  { ! singleton( X ) = Y, ! alpha5( Y
% 0.72/1.23    , X, Z ) }.
% 0.72/1.23  parent0[1]: (1687) {G0,W8,D3,L2,V3,M2}  { ! singleton( Y ) = X, ! alpha2( X
% 0.72/1.23    , Y, Z ) }.
% 0.72/1.23  parent1[1]: (20) {G0,W8,D2,L2,V3,M2} I { ! alpha5( X, Y, Z ), alpha2( X, Y
% 0.72/1.23    , Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1689) {G1,W8,D3,L2,V3,M2}  { ! Y = singleton( X ), ! alpha5( Y, X
% 0.72/1.23    , Z ) }.
% 0.72/1.23  parent0[0]: (1688) {G1,W8,D3,L2,V3,M2}  { ! singleton( X ) = Y, ! alpha5( Y
% 0.72/1.23    , X, Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (116) {G1,W8,D3,L2,V3,M2} R(22,20) { ! X = singleton( Y ), ! 
% 0.72/1.23    alpha5( X, Y, Z ) }.
% 0.72/1.23  parent0: (1689) {G1,W8,D3,L2,V3,M2}  { ! Y = singleton( X ), ! alpha5( Y, X
% 0.72/1.23    , Z ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := Y
% 0.72/1.23     Y := X
% 0.72/1.23     Z := Z
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1690) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_difference( X, Y )
% 0.72/1.23    , ! subset( X, Y ) }.
% 0.72/1.23  parent0[1]: (15) {G0,W8,D3,L2,V2,M2} I { ! subset( X, Y ), set_difference( 
% 0.72/1.23    X, Y ) ==> empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1691) {G1,W7,D4,L1,V2,M1}  { empty_set ==> set_difference( 
% 0.72/1.23    empty_set, unordered_pair( X, Y ) ) }.
% 0.72/1.23  parent0[1]: (1690) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_difference( X, 
% 0.72/1.23    Y ), ! subset( X, Y ) }.
% 0.72/1.23  parent1[0]: (28) {G1,W5,D3,L1,V2,M1} Q(3) { subset( empty_set, 
% 0.72/1.23    unordered_pair( X, Y ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := empty_set
% 0.72/1.23     Y := unordered_pair( X, Y )
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1692) {G1,W7,D4,L1,V2,M1}  { set_difference( empty_set, 
% 0.72/1.23    unordered_pair( X, Y ) ) ==> empty_set }.
% 0.72/1.23  parent0[0]: (1691) {G1,W7,D4,L1,V2,M1}  { empty_set ==> set_difference( 
% 0.72/1.23    empty_set, unordered_pair( X, Y ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (136) {G2,W7,D4,L1,V2,M1} R(15,28) { set_difference( empty_set
% 0.72/1.23    , unordered_pair( X, Y ) ) ==> empty_set }.
% 0.72/1.23  parent0: (1692) {G1,W7,D4,L1,V2,M1}  { set_difference( empty_set, 
% 0.72/1.23    unordered_pair( X, Y ) ) ==> empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1693) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_difference( X, Y )
% 0.72/1.23    , ! subset( X, Y ) }.
% 0.72/1.23  parent0[1]: (15) {G0,W8,D3,L2,V2,M2} I { ! subset( X, Y ), set_difference( 
% 0.72/1.23    X, Y ) ==> empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1694) {G1,W5,D3,L1,V1,M1}  { empty_set ==> set_difference( X, 
% 0.72/1.23    X ) }.
% 0.72/1.23  parent0[1]: (1693) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_difference( X, 
% 0.72/1.23    Y ), ! subset( X, Y ) }.
% 0.72/1.23  parent1[0]: (13) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := X
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := X
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1695) {G1,W5,D3,L1,V1,M1}  { set_difference( X, X ) ==> empty_set
% 0.72/1.23     }.
% 0.72/1.23  parent0[0]: (1694) {G1,W5,D3,L1,V1,M1}  { empty_set ==> set_difference( X, 
% 0.72/1.23    X ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (137) {G1,W5,D3,L1,V1,M1} R(15,13) { set_difference( X, X ) 
% 0.72/1.23    ==> empty_set }.
% 0.72/1.23  parent0: (1695) {G1,W5,D3,L1,V1,M1}  { set_difference( X, X ) ==> empty_set
% 0.72/1.23     }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1696) {G0,W11,D4,L2,V0,M2}  { ! empty_set ==> set_difference( 
% 0.72/1.23    skol3, unordered_pair( skol4, skol5 ) ), alpha5( skol3, skol4, skol5 )
% 0.72/1.23     }.
% 0.72/1.23  parent0[1]: (17) {G0,W11,D4,L2,V0,M2} I { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    set_difference( skol3, unordered_pair( skol4, skol5 ) ) ==> empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1697) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_difference( X, Y )
% 0.72/1.23    , ! subset( X, Y ) }.
% 0.72/1.23  parent0[1]: (15) {G0,W8,D3,L2,V2,M2} I { ! subset( X, Y ), set_difference( 
% 0.72/1.23    X, Y ) ==> empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23     X := X
% 0.72/1.23     Y := Y
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  resolution: (1698) {G1,W9,D3,L2,V0,M2}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    subset( skol3, unordered_pair( skol4, skol5 ) ) }.
% 0.72/1.23  parent0[0]: (1696) {G0,W11,D4,L2,V0,M2}  { ! empty_set ==> set_difference( 
% 0.72/1.23    skol3, unordered_pair( skol4, skol5 ) ), alpha5( skol3, skol4, skol5 )
% 0.72/1.23     }.
% 0.72/1.23  parent1[0]: (1697) {G0,W8,D3,L2,V2,M2}  { empty_set ==> set_difference( X, 
% 0.72/1.23    Y ), ! subset( X, Y ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23     X := skol3
% 0.72/1.23     Y := unordered_pair( skol4, skol5 )
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  subsumption: (309) {G1,W9,D3,L2,V0,M2} R(17,15) { alpha5( skol3, skol4, 
% 0.72/1.23    skol5 ), ! subset( skol3, unordered_pair( skol4, skol5 ) ) }.
% 0.72/1.23  parent0: (1698) {G1,W9,D3,L2,V0,M2}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    subset( skol3, unordered_pair( skol4, skol5 ) ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  permutation0:
% 0.72/1.23     0 ==> 0
% 0.72/1.23     1 ==> 1
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  eqswap: (1700) {G0,W11,D4,L2,V0,M2}  { ! empty_set ==> set_difference( 
% 0.72/1.23    skol3, unordered_pair( skol4, skol5 ) ), alpha5( skol3, skol4, skol5 )
% 0.72/1.23     }.
% 0.72/1.23  parent0[1]: (17) {G0,W11,D4,L2,V0,M2} I { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.23    set_difference( skol3, unordered_pair( skol4, skol5 ) ) ==> empty_set }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  paramod: (1703) {G1,W19,D4,L4,V0,M4}  { alpha5( empty_set, skol4, skol5 ), 
% 0.72/1.23    alpha5( skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), ! 
% 0.72/1.23    empty_set ==> set_difference( skol3, unordered_pair( skol4, skol5 ) ) }.
% 0.72/1.23  parent0[1]: (16) {G0,W11,D2,L3,V0,M3} I { alpha5( skol3, skol4, skol5 ), 
% 0.72/1.23    skol3 ==> empty_set, ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  parent1[1; 1]: (1700) {G0,W11,D4,L2,V0,M2}  { ! empty_set ==> 
% 0.72/1.23    set_difference( skol3, unordered_pair( skol4, skol5 ) ), alpha5( skol3, 
% 0.72/1.23    skol4, skol5 ) }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  paramod: (1705) {G1,W27,D4,L6,V0,M6}  { ! empty_set ==> set_difference( 
% 0.72/1.23    empty_set, unordered_pair( skol4, skol5 ) ), alpha5( skol3, skol4, skol5
% 0.72/1.23     ), ! alpha2( skol3, skol4, skol5 ), alpha5( empty_set, skol4, skol5 ), 
% 0.72/1.23    alpha5( skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  parent0[1]: (16) {G0,W11,D2,L3,V0,M3} I { alpha5( skol3, skol4, skol5 ), 
% 0.72/1.23    skol3 ==> empty_set, ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.23  parent1[3; 4]: (1703) {G1,W19,D4,L4,V0,M4}  { alpha5( empty_set, skol4, 
% 0.72/1.23    skol5 ), alpha5( skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), 
% 0.72/1.23    ! empty_set ==> set_difference( skol3, unordered_pair( skol4, skol5 ) )
% 0.72/1.23     }.
% 0.72/1.23  substitution0:
% 0.72/1.23  end
% 0.72/1.23  substitution1:
% 0.72/1.23  end
% 0.72/1.23  
% 0.72/1.23  factor: (1726) {G1,W23,D4,L5,V0,M5}  { ! empty_set ==> set_difference( 
% 0.72/1.23    empty_set, unordered_pair( skol4, skol5 ) ), alpha5( skol3, skol4, skol5
% 0.72/1.23     ), ! alpha2( skol3, skol4, skol5 ), alpha5( empty_set, skol4, skol5 ), !
% 0.72/1.38     alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  parent0[1, 4]: (1705) {G1,W27,D4,L6,V0,M6}  { ! empty_set ==> 
% 0.72/1.38    set_difference( empty_set, unordered_pair( skol4, skol5 ) ), alpha5( 
% 0.72/1.38    skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), alpha5( empty_set
% 0.72/1.38    , skol4, skol5 ), alpha5( skol3, skol4, skol5 ), ! alpha2( skol3, skol4, 
% 0.72/1.38    skol5 ) }.
% 0.72/1.38  substitution0:
% 0.72/1.38  end
% 0.72/1.38  
% 0.72/1.38  paramod: (1727) {G2,W19,D2,L5,V0,M5}  { ! empty_set ==> empty_set, alpha5( 
% 0.72/1.38    skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), alpha5( empty_set
% 0.72/1.38    , skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  parent0[0]: (136) {G2,W7,D4,L1,V2,M1} R(15,28) { set_difference( empty_set
% 0.72/1.38    , unordered_pair( X, Y ) ) ==> empty_set }.
% 0.72/1.38  parent1[0; 3]: (1726) {G1,W23,D4,L5,V0,M5}  { ! empty_set ==> 
% 0.72/1.38    set_difference( empty_set, unordered_pair( skol4, skol5 ) ), alpha5( 
% 0.72/1.38    skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), alpha5( empty_set
% 0.72/1.38    , skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  substitution0:
% 0.72/1.38     X := skol4
% 0.72/1.38     Y := skol5
% 0.72/1.38  end
% 0.72/1.38  substitution1:
% 0.72/1.38  end
% 0.72/1.38  
% 0.72/1.38  factor: (1728) {G2,W15,D2,L4,V0,M4}  { ! empty_set ==> empty_set, alpha5( 
% 0.72/1.38    skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), alpha5( empty_set
% 0.72/1.38    , skol4, skol5 ) }.
% 0.72/1.38  parent0[2, 4]: (1727) {G2,W19,D2,L5,V0,M5}  { ! empty_set ==> empty_set, 
% 0.72/1.38    alpha5( skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), alpha5( 
% 0.72/1.38    empty_set, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  substitution0:
% 0.72/1.38  end
% 0.72/1.38  
% 0.72/1.38  eqrefl: (1729) {G0,W12,D2,L3,V0,M3}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.38    alpha2( skol3, skol4, skol5 ), alpha5( empty_set, skol4, skol5 ) }.
% 0.72/1.38  parent0[0]: (1728) {G2,W15,D2,L4,V0,M4}  { ! empty_set ==> empty_set, 
% 0.72/1.38    alpha5( skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ), alpha5( 
% 0.72/1.38    empty_set, skol4, skol5 ) }.
% 0.72/1.38  substitution0:
% 0.72/1.38  end
% 0.72/1.38  
% 0.72/1.38  resolution: (1730) {G1,W8,D2,L2,V0,M2}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.38    alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  parent0[0]: (34) {G1,W4,D2,L1,V2,M1} Q(19) { ! alpha5( empty_set, X, Y )
% 0.72/1.38     }.
% 0.72/1.38  parent1[2]: (1729) {G0,W12,D2,L3,V0,M3}  { alpha5( skol3, skol4, skol5 ), !
% 0.72/1.38     alpha2( skol3, skol4, skol5 ), alpha5( empty_set, skol4, skol5 ) }.
% 0.72/1.38  substitution0:
% 0.72/1.38     X := skol4
% 0.72/1.38     Y := skol5
% 0.72/1.38  end
% 0.72/1.38  substitution1:
% 0.72/1.38  end
% 0.72/1.38  
% 0.72/1.38  subsumption: (315) {G3,W8,D2,L2,V0,M2} P(16,17);d(136);q;r(34) { alpha5( 
% 0.72/1.38    skol3, skol4, skol5 ), ! alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  parent0: (1730) {G1,W8,D2,L2,V0,M2}  { alpha5( skol3, skol4, skol5 ), ! 
% 0.72/1.38    alpha2( skol3, skol4, skol5 ) }.
% 0.72/1.38  substitution0:
% 0.72/1.38  end
% 0.72/1.38  permutation0:
% 0.72/1.38     0 ==> 0
% 0.72/1.38     1 ==> 1
% 0.72/1.38  end
% 0.72/1.38  
% 0.72/1.38  *** allocated 50625 integers for termspace/termends
% 0.72/1.38  *** allocated 15000 integers for justifications
% 0.72/1.38  *** allocated 113905 integers for clauses
% 0.72/1.38  *** allocated 22500 integers for justifications
% 0.72/1.38  *** allocated 75937 integers for termspace/termends
% 0.72/1.38  *** allocated 33750 integers for justifications
% 0.72/1.38  *** allocated 50625 integers for justifications
% 0.72/1.38  *** allocated 113905 integers for termspace/termends
% 0.72/1.38  
% 0.72/1.38  ==> (333) {G3,W9,D3,L2,V2,M2} P(2,17);d(136);q;r(34) { ! subset( skol3, 
% 0.72/1.38    unordered_pair( X, Y ) ), ! alpha1( skol3, X, Y ) }.
% 0.72/1.38  
% 0.72/1.38  
% 0.72/1.38  
% 0.72/1.38  !!! Internal Problem: OH, OH, COULD NOT DERIVE GOAL !!!
% 0.72/1.38  
% 0.72/1.38  Bliksem ended
%------------------------------------------------------------------------------