TSTP Solution File: SET930+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SET930+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 14:36:20 EDT 2023

% Result   : Theorem 0.16s 0.56s
% Output   : CNFRefutation 0.16s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   17
% Syntax   : Number of formulae    :   48 (  12 unt;  11 typ;   0 def)
%            Number of atoms       :   99 (  51 equ)
%            Maximal formula atoms :   11 (   2 avg)
%            Number of connectives :  116 (  54   ~;  34   |;  21   &)
%                                         (   5 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    8 (   5   >;   3   *;   0   +;   0  <<)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :   68 (   2 sgn;  40   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    in: ( $i * $i ) > $o ).

tff(decl_23,type,
    unordered_pair: ( $i * $i ) > $i ).

tff(decl_24,type,
    empty_set: $i ).

tff(decl_25,type,
    empty: $i > $o ).

tff(decl_26,type,
    set_difference: ( $i * $i ) > $i ).

tff(decl_27,type,
    singleton: $i > $i ).

tff(decl_28,type,
    esk1_0: $i ).

tff(decl_29,type,
    esk2_0: $i ).

tff(decl_30,type,
    esk3_0: $i ).

tff(decl_31,type,
    esk4_0: $i ).

tff(decl_32,type,
    esk5_0: $i ).

fof(l39_zfmisc_1,axiom,
    ! [X1,X2,X3] :
      ( set_difference(unordered_pair(X1,X2),X3) = singleton(X1)
    <=> ( ~ in(X1,X3)
        & ( in(X2,X3)
          | X1 = X2 ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',l39_zfmisc_1) ).

fof(t72_zfmisc_1,axiom,
    ! [X1,X2,X3] :
      ( set_difference(unordered_pair(X1,X2),X3) = unordered_pair(X1,X2)
    <=> ( ~ in(X1,X3)
        & ~ in(X2,X3) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t72_zfmisc_1) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [X1,X2] :
      ( in(X1,X2)
     => ~ in(X2,X1) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',antisymmetry_r2_hidden) ).

fof(t74_zfmisc_1,conjecture,
    ! [X1,X2,X3] :
      ~ ( set_difference(unordered_pair(X1,X2),X3) != empty_set
        & set_difference(unordered_pair(X1,X2),X3) != singleton(X1)
        & set_difference(unordered_pair(X1,X2),X3) != singleton(X2)
        & set_difference(unordered_pair(X1,X2),X3) != unordered_pair(X1,X2) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t74_zfmisc_1) ).

fof(t73_zfmisc_1,axiom,
    ! [X1,X2,X3] :
      ( set_difference(unordered_pair(X1,X2),X3) = empty_set
    <=> ( in(X1,X3)
        & in(X2,X3) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t73_zfmisc_1) ).

fof(commutativity_k2_tarski,axiom,
    ! [X1,X2] : unordered_pair(X1,X2) = unordered_pair(X2,X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',commutativity_k2_tarski) ).

fof(c_0_6,plain,
    ! [X1,X2,X3] :
      ( set_difference(unordered_pair(X1,X2),X3) = singleton(X1)
    <=> ( ~ in(X1,X3)
        & ( in(X2,X3)
          | X1 = X2 ) ) ),
    inference(fof_simplification,[status(thm)],[l39_zfmisc_1]) ).

fof(c_0_7,plain,
    ! [X8,X9,X10] :
      ( ( ~ in(X8,X10)
        | set_difference(unordered_pair(X8,X9),X10) != singleton(X8) )
      & ( in(X9,X10)
        | X8 = X9
        | set_difference(unordered_pair(X8,X9),X10) != singleton(X8) )
      & ( ~ in(X9,X10)
        | in(X8,X10)
        | set_difference(unordered_pair(X8,X9),X10) = singleton(X8) )
      & ( X8 != X9
        | in(X8,X10)
        | set_difference(unordered_pair(X8,X9),X10) = singleton(X8) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])]) ).

fof(c_0_8,plain,
    ! [X1,X2,X3] :
      ( set_difference(unordered_pair(X1,X2),X3) = unordered_pair(X1,X2)
    <=> ( ~ in(X1,X3)
        & ~ in(X2,X3) ) ),
    inference(fof_simplification,[status(thm)],[t72_zfmisc_1]) ).

fof(c_0_9,plain,
    ! [X1,X2] :
      ( in(X1,X2)
     => ~ in(X2,X1) ),
    inference(fof_simplification,[status(thm)],[antisymmetry_r2_hidden]) ).

cnf(c_0_10,plain,
    ( in(X1,X3)
    | set_difference(unordered_pair(X1,X2),X3) = singleton(X1)
    | X1 != X2 ),
    inference(split_conjunct,[status(thm)],[c_0_7]) ).

fof(c_0_11,plain,
    ! [X13,X14,X15] :
      ( ( ~ in(X13,X15)
        | set_difference(unordered_pair(X13,X14),X15) != unordered_pair(X13,X14) )
      & ( ~ in(X14,X15)
        | set_difference(unordered_pair(X13,X14),X15) != unordered_pair(X13,X14) )
      & ( in(X13,X15)
        | in(X14,X15)
        | set_difference(unordered_pair(X13,X14),X15) = unordered_pair(X13,X14) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_8])])]) ).

fof(c_0_12,plain,
    ! [X4,X5] :
      ( ~ in(X4,X5)
      | ~ in(X5,X4) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_9])]) ).

cnf(c_0_13,plain,
    ( set_difference(unordered_pair(X1,X1),X2) = singleton(X1)
    | in(X1,X2) ),
    inference(er,[status(thm)],[c_0_10]) ).

cnf(c_0_14,plain,
    ( in(X1,X2)
    | in(X3,X2)
    | set_difference(unordered_pair(X1,X3),X2) = unordered_pair(X1,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

fof(c_0_15,negated_conjecture,
    ~ ! [X1,X2,X3] :
        ~ ( set_difference(unordered_pair(X1,X2),X3) != empty_set
          & set_difference(unordered_pair(X1,X2),X3) != singleton(X1)
          & set_difference(unordered_pair(X1,X2),X3) != singleton(X2)
          & set_difference(unordered_pair(X1,X2),X3) != unordered_pair(X1,X2) ),
    inference(assume_negation,[status(cth)],[t74_zfmisc_1]) ).

cnf(c_0_16,plain,
    ( ~ in(X1,X2)
    | ~ in(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_17,plain,
    ( unordered_pair(X1,X1) = singleton(X1)
    | in(X1,X2) ),
    inference(spm,[status(thm)],[c_0_13,c_0_14]) ).

fof(c_0_18,negated_conjecture,
    ( set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != empty_set
    & set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != singleton(esk3_0)
    & set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != singleton(esk4_0)
    & set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != unordered_pair(esk3_0,esk4_0) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_15])])]) ).

fof(c_0_19,plain,
    ! [X16,X17,X18] :
      ( ( in(X16,X18)
        | set_difference(unordered_pair(X16,X17),X18) != empty_set )
      & ( in(X17,X18)
        | set_difference(unordered_pair(X16,X17),X18) != empty_set )
      & ( ~ in(X16,X18)
        | ~ in(X17,X18)
        | set_difference(unordered_pair(X16,X17),X18) = empty_set ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t73_zfmisc_1])])]) ).

cnf(c_0_20,plain,
    ( unordered_pair(X1,X1) = singleton(X1)
    | ~ in(X2,X1) ),
    inference(spm,[status(thm)],[c_0_16,c_0_17]) ).

cnf(c_0_21,negated_conjecture,
    set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != empty_set,
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_22,plain,
    ( set_difference(unordered_pair(X1,X3),X2) = empty_set
    | ~ in(X1,X2)
    | ~ in(X3,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_23,plain,
    ( unordered_pair(X1,X1) = singleton(X1)
    | unordered_pair(X2,X2) = singleton(X2) ),
    inference(spm,[status(thm)],[c_0_20,c_0_17]) ).

fof(c_0_24,plain,
    ! [X6,X7] : unordered_pair(X6,X7) = unordered_pair(X7,X6),
    inference(variable_rename,[status(thm)],[commutativity_k2_tarski]) ).

cnf(c_0_25,negated_conjecture,
    set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != singleton(esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_26,plain,
    ( in(X3,X2)
    | set_difference(unordered_pair(X3,X1),X2) = singleton(X3)
    | ~ in(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_7]) ).

cnf(c_0_27,negated_conjecture,
    ( ~ in(esk4_0,esk5_0)
    | ~ in(esk3_0,esk5_0) ),
    inference(spm,[status(thm)],[c_0_21,c_0_22]) ).

cnf(c_0_28,negated_conjecture,
    set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != singleton(esk4_0),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_29,plain,
    unordered_pair(X1,X1) = singleton(X1),
    inference(ef,[status(thm)],[c_0_23]) ).

cnf(c_0_30,plain,
    unordered_pair(X1,X2) = unordered_pair(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_31,negated_conjecture,
    set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != unordered_pair(esk3_0,esk4_0),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_32,negated_conjecture,
    ~ in(esk4_0,esk5_0),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_25,c_0_26]),c_0_27]) ).

cnf(c_0_33,negated_conjecture,
    set_difference(unordered_pair(esk3_0,esk4_0),esk5_0) != unordered_pair(esk4_0,esk4_0),
    inference(rw,[status(thm)],[c_0_28,c_0_29]) ).

cnf(c_0_34,plain,
    ( set_difference(unordered_pair(X1,X2),X3) = singleton(X2)
    | in(X2,X3)
    | ~ in(X1,X3) ),
    inference(spm,[status(thm)],[c_0_26,c_0_30]) ).

cnf(c_0_35,negated_conjecture,
    in(esk3_0,esk5_0),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_31,c_0_14]),c_0_32]) ).

cnf(c_0_36,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_34]),c_0_29]),c_0_35])]),c_0_32]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.09/0.10  % Problem    : SET930+1 : TPTP v8.1.2. Released v3.2.0.
% 0.11/0.11  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.11/0.31  % Computer : n024.cluster.edu
% 0.11/0.31  % Model    : x86_64 x86_64
% 0.11/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.31  % Memory   : 8042.1875MB
% 0.11/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.31  % CPULimit   : 300
% 0.11/0.31  % WCLimit    : 300
% 0.11/0.31  % DateTime   : Sat Aug 26 09:17:24 EDT 2023
% 0.11/0.31  % CPUTime  : 
% 0.16/0.54  start to proof: theBenchmark
% 0.16/0.56  % Version  : CSE_E---1.5
% 0.16/0.56  % Problem  : theBenchmark.p
% 0.16/0.56  % Proof found
% 0.16/0.56  % SZS status Theorem for theBenchmark.p
% 0.16/0.56  % SZS output start Proof
% See solution above
% 0.16/0.57  % Total time : 0.012000 s
% 0.16/0.57  % SZS output end Proof
% 0.16/0.57  % Total time : 0.015000 s
%------------------------------------------------------------------------------