TSTP Solution File: SET914+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SET914+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 15:33:43 EDT 2023

% Result   : Theorem 0.21s 0.45s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : SET914+1 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.34  % Computer : n027.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.35  % DateTime : Sat Aug 26 13:12:20 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.21/0.45  Command-line arguments: --no-flatten-goal
% 0.21/0.45  
% 0.21/0.45  % SZS status Theorem
% 0.21/0.45  
% 0.21/0.46  % SZS output start Proof
% 0.21/0.46  Take the following subset of the input axioms:
% 0.21/0.46    fof(antisymmetry_r2_hidden, axiom, ![A, B]: (in(A, B) => ~in(B, A))).
% 0.21/0.46    fof(commutativity_k2_tarski, axiom, ![A3, B2]: unordered_pair(A3, B2)=unordered_pair(B2, A3)).
% 0.21/0.46    fof(commutativity_k3_xboole_0, axiom, ![A3, B2]: set_intersection2(A3, B2)=set_intersection2(B2, A3)).
% 0.21/0.46    fof(d1_xboole_0, axiom, ![A3]: (A3=empty_set <=> ![B2]: ~in(B2, A3))).
% 0.21/0.46    fof(d2_tarski, axiom, ![C, A2, B2]: (C=unordered_pair(A2, B2) <=> ![D]: (in(D, C) <=> (D=A2 | D=B2)))).
% 0.21/0.46    fof(d3_xboole_0, axiom, ![B2, C2, A2_2]: (C2=set_intersection2(A2_2, B2) <=> ![D2]: (in(D2, C2) <=> (in(D2, A2_2) & in(D2, B2))))).
% 0.21/0.46    fof(d7_xboole_0, axiom, ![B2, A2_2]: (disjoint(A2_2, B2) <=> set_intersection2(A2_2, B2)=empty_set)).
% 0.21/0.46    fof(t55_zfmisc_1, conjecture, ![A3, B2, C2]: ~(disjoint(unordered_pair(A3, B2), C2) & in(A3, C2))).
% 0.21/0.46  
% 0.21/0.46  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.46  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.46  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.46    fresh(y, y, x1...xn) = u
% 0.21/0.46    C => fresh(s, t, x1...xn) = v
% 0.21/0.46  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.46  variables of u and v.
% 0.21/0.46  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.46  input problem has no model of domain size 1).
% 0.21/0.46  
% 0.21/0.46  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.46  
% 0.21/0.46  Axiom 1 (commutativity_k2_tarski): unordered_pair(X, Y) = unordered_pair(Y, X).
% 0.21/0.46  Axiom 2 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X).
% 0.21/0.46  Axiom 3 (t55_zfmisc_1): in(a, c) = true2.
% 0.21/0.46  Axiom 4 (d2_tarski_1): equiv2(X, Y, X) = true2.
% 0.21/0.46  Axiom 5 (d2_tarski_4): fresh16(X, X, Y, Z) = true2.
% 0.21/0.46  Axiom 6 (d3_xboole_0_2): fresh11(X, X, Y, Z) = true2.
% 0.21/0.46  Axiom 7 (d7_xboole_0_1): fresh4(X, X, Y, Z) = empty_set.
% 0.21/0.46  Axiom 8 (t55_zfmisc_1_1): disjoint(unordered_pair(a, b), c) = true2.
% 0.21/0.46  Axiom 9 (d3_xboole_0_3): fresh10(X, X, Y, Z, W) = equiv(Y, Z, W).
% 0.21/0.46  Axiom 10 (d3_xboole_0_3): fresh9(X, X, Y, Z, W) = true2.
% 0.21/0.46  Axiom 11 (d2_tarski_4): fresh17(X, X, Y, Z, W, V) = in(V, W).
% 0.21/0.46  Axiom 12 (d3_xboole_0_2): fresh12(X, X, Y, Z, W, V) = in(V, W).
% 0.21/0.46  Axiom 13 (d7_xboole_0_1): fresh4(disjoint(X, Y), true2, X, Y) = set_intersection2(X, Y).
% 0.21/0.46  Axiom 14 (d3_xboole_0_3): fresh10(in(X, Y), true2, Z, Y, X) = fresh9(in(X, Z), true2, Z, Y, X).
% 0.21/0.46  Axiom 15 (d2_tarski_4): fresh17(equiv2(X, Y, Z), true2, X, Y, W, Z) = fresh16(W, unordered_pair(X, Y), W, Z).
% 0.21/0.46  Axiom 16 (d3_xboole_0_2): fresh12(equiv(X, Y, Z), true2, X, Y, W, Z) = fresh11(W, set_intersection2(X, Y), W, Z).
% 0.21/0.46  
% 0.21/0.46  Goal 1 (d1_xboole_0_1): tuple2(X, in(Y, X)) = tuple2(empty_set, true2).
% 0.21/0.46  The goal is true when:
% 0.21/0.46    X = empty_set
% 0.21/0.46    Y = a
% 0.21/0.46  
% 0.21/0.46  Proof:
% 0.21/0.46    tuple2(empty_set, in(a, empty_set))
% 0.21/0.46  = { by axiom 12 (d3_xboole_0_2) R->L }
% 0.21/0.46    tuple2(empty_set, fresh12(true2, true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.46  = { by axiom 10 (d3_xboole_0_3) R->L }
% 0.21/0.46    tuple2(empty_set, fresh12(fresh9(true2, true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.46  = { by axiom 3 (t55_zfmisc_1) R->L }
% 0.21/0.47    tuple2(empty_set, fresh12(fresh9(in(a, c), true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 14 (d3_xboole_0_3) R->L }
% 0.21/0.47    tuple2(empty_set, fresh12(fresh10(in(a, unordered_pair(a, b)), true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 11 (d2_tarski_4) R->L }
% 0.21/0.47    tuple2(empty_set, fresh12(fresh10(fresh17(true2, true2, a, b, unordered_pair(a, b), a), true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 4 (d2_tarski_1) R->L }
% 0.21/0.47    tuple2(empty_set, fresh12(fresh10(fresh17(equiv2(a, b, a), true2, a, b, unordered_pair(a, b), a), true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 15 (d2_tarski_4) }
% 0.21/0.47    tuple2(empty_set, fresh12(fresh10(fresh16(unordered_pair(a, b), unordered_pair(a, b), unordered_pair(a, b), a), true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 5 (d2_tarski_4) }
% 0.21/0.47    tuple2(empty_set, fresh12(fresh10(true2, true2, c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 9 (d3_xboole_0_3) }
% 0.21/0.47    tuple2(empty_set, fresh12(equiv(c, unordered_pair(a, b), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 1 (commutativity_k2_tarski) }
% 0.21/0.47    tuple2(empty_set, fresh12(equiv(c, unordered_pair(b, a), a), true2, c, unordered_pair(b, a), empty_set, a))
% 0.21/0.47  = { by axiom 16 (d3_xboole_0_2) }
% 0.21/0.47    tuple2(empty_set, fresh11(empty_set, set_intersection2(c, unordered_pair(b, a)), empty_set, a))
% 0.21/0.47  = { by axiom 2 (commutativity_k3_xboole_0) R->L }
% 0.21/0.47    tuple2(empty_set, fresh11(empty_set, set_intersection2(unordered_pair(b, a), c), empty_set, a))
% 0.21/0.47  = { by axiom 13 (d7_xboole_0_1) R->L }
% 0.21/0.47    tuple2(empty_set, fresh11(empty_set, fresh4(disjoint(unordered_pair(b, a), c), true2, unordered_pair(b, a), c), empty_set, a))
% 0.21/0.47  = { by axiom 1 (commutativity_k2_tarski) R->L }
% 0.21/0.47    tuple2(empty_set, fresh11(empty_set, fresh4(disjoint(unordered_pair(a, b), c), true2, unordered_pair(b, a), c), empty_set, a))
% 0.21/0.47  = { by axiom 8 (t55_zfmisc_1_1) }
% 0.21/0.47    tuple2(empty_set, fresh11(empty_set, fresh4(true2, true2, unordered_pair(b, a), c), empty_set, a))
% 0.21/0.47  = { by axiom 7 (d7_xboole_0_1) }
% 0.21/0.47    tuple2(empty_set, fresh11(empty_set, empty_set, empty_set, a))
% 0.21/0.47  = { by axiom 6 (d3_xboole_0_2) }
% 0.21/0.47    tuple2(empty_set, true2)
% 0.21/0.47  % SZS output end Proof
% 0.21/0.47  
% 0.21/0.47  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------