TSTP Solution File: SET914+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SET914+1 : TPTP v5.0.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art11.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 3.00GHz @ 3000MHz
% Memory   : 2006MB
% OS       : Linux 2.6.31.5-127.fc12.i686.PAE
% CPULimit : 300s
% DateTime : Thu Dec 30 00:23:16 EST 2010

% Result   : Theorem 1.13s
% Output   : Solution 1.13s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP32426/SET914+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP32426/SET914+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP32426/SET914+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 32558
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.02 WC
% # Preprocessing time     : 0.011 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(3, axiom,![X1]:![X2]:![X3]:(X3=unordered_pair(X1,X2)<=>![X4]:(in(X4,X3)<=>(X4=X1|X4=X2))),file('/tmp/SRASS.s.p', d2_tarski)).
% fof(5, axiom,![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1),file('/tmp/SRASS.s.p', commutativity_k3_xboole_0)).
% fof(7, axiom,![X1]:![X2]:![X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))),file('/tmp/SRASS.s.p', d3_xboole_0)).
% fof(8, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set),file('/tmp/SRASS.s.p', d7_xboole_0)).
% fof(9, axiom,![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))),file('/tmp/SRASS.s.p', d1_xboole_0)).
% fof(13, conjecture,![X1]:![X2]:![X3]:~((disjoint(unordered_pair(X1,X2),X3)&in(X1,X3))),file('/tmp/SRASS.s.p', t55_zfmisc_1)).
% fof(14, negated_conjecture,~(![X1]:![X2]:![X3]:~((disjoint(unordered_pair(X1,X2),X3)&in(X1,X3)))),inference(assume_negation,[status(cth)],[13])).
% fof(16, plain,![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))),inference(fof_simplification,[status(thm)],[9,theory(equality)])).
% fof(24, plain,![X1]:![X2]:![X3]:((~(X3=unordered_pair(X1,X2))|![X4]:((~(in(X4,X3))|(X4=X1|X4=X2))&((~(X4=X1)&~(X4=X2))|in(X4,X3))))&(?[X4]:((~(in(X4,X3))|(~(X4=X1)&~(X4=X2)))&(in(X4,X3)|(X4=X1|X4=X2)))|X3=unordered_pair(X1,X2))),inference(fof_nnf,[status(thm)],[3])).
% fof(25, plain,![X5]:![X6]:![X7]:((~(X7=unordered_pair(X5,X6))|![X8]:((~(in(X8,X7))|(X8=X5|X8=X6))&((~(X8=X5)&~(X8=X6))|in(X8,X7))))&(?[X9]:((~(in(X9,X7))|(~(X9=X5)&~(X9=X6)))&(in(X9,X7)|(X9=X5|X9=X6)))|X7=unordered_pair(X5,X6))),inference(variable_rename,[status(thm)],[24])).
% fof(26, plain,![X5]:![X6]:![X7]:((~(X7=unordered_pair(X5,X6))|![X8]:((~(in(X8,X7))|(X8=X5|X8=X6))&((~(X8=X5)&~(X8=X6))|in(X8,X7))))&(((~(in(esk1_3(X5,X6,X7),X7))|(~(esk1_3(X5,X6,X7)=X5)&~(esk1_3(X5,X6,X7)=X6)))&(in(esk1_3(X5,X6,X7),X7)|(esk1_3(X5,X6,X7)=X5|esk1_3(X5,X6,X7)=X6)))|X7=unordered_pair(X5,X6))),inference(skolemize,[status(esa)],[25])).
% fof(27, plain,![X5]:![X6]:![X7]:![X8]:((((~(in(X8,X7))|(X8=X5|X8=X6))&((~(X8=X5)&~(X8=X6))|in(X8,X7)))|~(X7=unordered_pair(X5,X6)))&(((~(in(esk1_3(X5,X6,X7),X7))|(~(esk1_3(X5,X6,X7)=X5)&~(esk1_3(X5,X6,X7)=X6)))&(in(esk1_3(X5,X6,X7),X7)|(esk1_3(X5,X6,X7)=X5|esk1_3(X5,X6,X7)=X6)))|X7=unordered_pair(X5,X6))),inference(shift_quantors,[status(thm)],[26])).
% fof(28, plain,![X5]:![X6]:![X7]:![X8]:((((~(in(X8,X7))|(X8=X5|X8=X6))|~(X7=unordered_pair(X5,X6)))&(((~(X8=X5)|in(X8,X7))|~(X7=unordered_pair(X5,X6)))&((~(X8=X6)|in(X8,X7))|~(X7=unordered_pair(X5,X6)))))&((((~(esk1_3(X5,X6,X7)=X5)|~(in(esk1_3(X5,X6,X7),X7)))|X7=unordered_pair(X5,X6))&((~(esk1_3(X5,X6,X7)=X6)|~(in(esk1_3(X5,X6,X7),X7)))|X7=unordered_pair(X5,X6)))&((in(esk1_3(X5,X6,X7),X7)|(esk1_3(X5,X6,X7)=X5|esk1_3(X5,X6,X7)=X6))|X7=unordered_pair(X5,X6)))),inference(distribute,[status(thm)],[27])).
% cnf(33,plain,(in(X4,X1)|X1!=unordered_pair(X2,X3)|X4!=X2),inference(split_conjunct,[status(thm)],[28])).
% fof(37, plain,![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3),inference(variable_rename,[status(thm)],[5])).
% cnf(38,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)),inference(split_conjunct,[status(thm)],[37])).
% fof(41, plain,![X1]:![X2]:![X3]:((~(X3=set_intersection2(X1,X2))|![X4]:((~(in(X4,X3))|(in(X4,X1)&in(X4,X2)))&((~(in(X4,X1))|~(in(X4,X2)))|in(X4,X3))))&(?[X4]:((~(in(X4,X3))|(~(in(X4,X1))|~(in(X4,X2))))&(in(X4,X3)|(in(X4,X1)&in(X4,X2))))|X3=set_intersection2(X1,X2))),inference(fof_nnf,[status(thm)],[7])).
% fof(42, plain,![X5]:![X6]:![X7]:((~(X7=set_intersection2(X5,X6))|![X8]:((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))))&(?[X9]:((~(in(X9,X7))|(~(in(X9,X5))|~(in(X9,X6))))&(in(X9,X7)|(in(X9,X5)&in(X9,X6))))|X7=set_intersection2(X5,X6))),inference(variable_rename,[status(thm)],[41])).
% fof(43, plain,![X5]:![X6]:![X7]:((~(X7=set_intersection2(X5,X6))|![X8]:((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))))&(((~(in(esk2_3(X5,X6,X7),X7))|(~(in(esk2_3(X5,X6,X7),X5))|~(in(esk2_3(X5,X6,X7),X6))))&(in(esk2_3(X5,X6,X7),X7)|(in(esk2_3(X5,X6,X7),X5)&in(esk2_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))),inference(skolemize,[status(esa)],[42])).
% fof(44, plain,![X5]:![X6]:![X7]:![X8]:((((~(in(X8,X7))|(in(X8,X5)&in(X8,X6)))&((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7)))|~(X7=set_intersection2(X5,X6)))&(((~(in(esk2_3(X5,X6,X7),X7))|(~(in(esk2_3(X5,X6,X7),X5))|~(in(esk2_3(X5,X6,X7),X6))))&(in(esk2_3(X5,X6,X7),X7)|(in(esk2_3(X5,X6,X7),X5)&in(esk2_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))),inference(shift_quantors,[status(thm)],[43])).
% fof(45, plain,![X5]:![X6]:![X7]:![X8]:(((((in(X8,X5)|~(in(X8,X7)))|~(X7=set_intersection2(X5,X6)))&((in(X8,X6)|~(in(X8,X7)))|~(X7=set_intersection2(X5,X6))))&(((~(in(X8,X5))|~(in(X8,X6)))|in(X8,X7))|~(X7=set_intersection2(X5,X6))))&(((~(in(esk2_3(X5,X6,X7),X7))|(~(in(esk2_3(X5,X6,X7),X5))|~(in(esk2_3(X5,X6,X7),X6))))|X7=set_intersection2(X5,X6))&(((in(esk2_3(X5,X6,X7),X5)|in(esk2_3(X5,X6,X7),X7))|X7=set_intersection2(X5,X6))&((in(esk2_3(X5,X6,X7),X6)|in(esk2_3(X5,X6,X7),X7))|X7=set_intersection2(X5,X6))))),inference(distribute,[status(thm)],[44])).
% cnf(46,plain,(X1=set_intersection2(X2,X3)|in(esk2_3(X2,X3,X1),X1)|in(esk2_3(X2,X3,X1),X3)),inference(split_conjunct,[status(thm)],[45])).
% cnf(49,plain,(in(X4,X1)|X1!=set_intersection2(X2,X3)|~in(X4,X3)|~in(X4,X2)),inference(split_conjunct,[status(thm)],[45])).
% cnf(51,plain,(in(X4,X2)|X1!=set_intersection2(X2,X3)|~in(X4,X1)),inference(split_conjunct,[status(thm)],[45])).
% fof(52, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_intersection2(X1,X2)=empty_set)&(~(set_intersection2(X1,X2)=empty_set)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[8])).
% fof(53, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_intersection2(X3,X4)=empty_set)&(~(set_intersection2(X3,X4)=empty_set)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[52])).
% cnf(55,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)),inference(split_conjunct,[status(thm)],[53])).
% fof(56, plain,![X1]:((~(X1=empty_set)|![X2]:~(in(X2,X1)))&(?[X2]:in(X2,X1)|X1=empty_set)),inference(fof_nnf,[status(thm)],[16])).
% fof(57, plain,![X3]:((~(X3=empty_set)|![X4]:~(in(X4,X3)))&(?[X5]:in(X5,X3)|X3=empty_set)),inference(variable_rename,[status(thm)],[56])).
% fof(58, plain,![X3]:((~(X3=empty_set)|![X4]:~(in(X4,X3)))&(in(esk3_1(X3),X3)|X3=empty_set)),inference(skolemize,[status(esa)],[57])).
% fof(59, plain,![X3]:![X4]:((~(in(X4,X3))|~(X3=empty_set))&(in(esk3_1(X3),X3)|X3=empty_set)),inference(shift_quantors,[status(thm)],[58])).
% cnf(61,plain,(X1!=empty_set|~in(X2,X1)),inference(split_conjunct,[status(thm)],[59])).
% fof(69, negated_conjecture,?[X1]:?[X2]:?[X3]:(disjoint(unordered_pair(X1,X2),X3)&in(X1,X3)),inference(fof_nnf,[status(thm)],[14])).
% fof(70, negated_conjecture,?[X4]:?[X5]:?[X6]:(disjoint(unordered_pair(X4,X5),X6)&in(X4,X6)),inference(variable_rename,[status(thm)],[69])).
% fof(71, negated_conjecture,(disjoint(unordered_pair(esk6_0,esk7_0),esk8_0)&in(esk6_0,esk8_0)),inference(skolemize,[status(esa)],[70])).
% cnf(72,negated_conjecture,(in(esk6_0,esk8_0)),inference(split_conjunct,[status(thm)],[71])).
% cnf(73,negated_conjecture,(disjoint(unordered_pair(esk6_0,esk7_0),esk8_0)),inference(split_conjunct,[status(thm)],[71])).
% cnf(75,plain,(in(X1,X2)|unordered_pair(X1,X3)!=X2),inference(er,[status(thm)],[33,theory(equality)])).
% cnf(79,negated_conjecture,(set_intersection2(unordered_pair(esk6_0,esk7_0),esk8_0)=empty_set),inference(spm,[status(thm)],[55,73,theory(equality)])).
% cnf(87,plain,(in(X1,unordered_pair(X1,X2))),inference(er,[status(thm)],[75,theory(equality)])).
% cnf(102,plain,(in(X1,X2)|~in(X1,set_intersection2(X2,X3))),inference(er,[status(thm)],[51,theory(equality)])).
% cnf(107,plain,(in(X1,set_intersection2(X2,X3))|~in(X1,X3)|~in(X1,X2)),inference(er,[status(thm)],[49,theory(equality)])).
% cnf(114,plain,(set_intersection2(X2,X3)=X1|in(esk2_3(X2,X3,X1),X3)|empty_set!=X1),inference(spm,[status(thm)],[61,46,theory(equality)])).
% cnf(132,plain,(set_intersection2(X2,X1)=X3|empty_set!=X1|empty_set!=X3),inference(spm,[status(thm)],[61,114,theory(equality)])).
% cnf(150,negated_conjecture,(set_intersection2(esk8_0,unordered_pair(esk6_0,esk7_0))=empty_set),inference(rw,[status(thm)],[79,38,theory(equality)])).
% cnf(164,plain,(set_intersection2(X1,X2)=empty_set|empty_set!=X2),inference(er,[status(thm)],[132,theory(equality)])).
% cnf(166,plain,(empty_set=set_intersection2(X2,X1)|empty_set!=X2),inference(spm,[status(thm)],[38,164,theory(equality)])).
% cnf(273,plain,(in(X1,X2)|~in(X1,empty_set)|empty_set!=X2),inference(spm,[status(thm)],[102,166,theory(equality)])).
% cnf(293,plain,(empty_set!=X2|~in(X1,empty_set)),inference(csr,[status(thm)],[273,61])).
% fof(294, plain,(~(epred3_0)<=>![X2]:~(empty_set=X2)),introduced(definition),['split']).
% cnf(295,plain,(epred3_0|empty_set!=X2),inference(split_equiv,[status(thm)],[294])).
% fof(296, plain,(~(epred4_0)<=>![X1]:~(in(X1,empty_set))),introduced(definition),['split']).
% cnf(297,plain,(epred4_0|~in(X1,empty_set)),inference(split_equiv,[status(thm)],[296])).
% cnf(298,plain,(~epred4_0|~epred3_0),inference(apply_def,[status(esa)],[inference(apply_def,[status(esa)],[293,294,theory(equality)]),296,theory(equality)]),['split']).
% cnf(299,plain,(epred3_0),inference(er,[status(thm)],[295,theory(equality)])).
% cnf(301,plain,(~epred4_0|$false),inference(rw,[status(thm)],[298,299,theory(equality)])).
% cnf(302,plain,(~epred4_0),inference(cn,[status(thm)],[301,theory(equality)])).
% cnf(303,plain,(~in(X1,empty_set)),inference(sr,[status(thm)],[297,302,theory(equality)])).
% cnf(339,negated_conjecture,(in(X1,empty_set)|~in(X1,unordered_pair(esk6_0,esk7_0))|~in(X1,esk8_0)),inference(spm,[status(thm)],[107,150,theory(equality)])).
% cnf(345,negated_conjecture,(~in(X1,unordered_pair(esk6_0,esk7_0))|~in(X1,esk8_0)),inference(sr,[status(thm)],[339,303,theory(equality)])).
% cnf(356,negated_conjecture,(~in(esk6_0,esk8_0)),inference(spm,[status(thm)],[345,87,theory(equality)])).
% cnf(359,negated_conjecture,($false),inference(rw,[status(thm)],[356,72,theory(equality)])).
% cnf(360,negated_conjecture,($false),inference(cn,[status(thm)],[359,theory(equality)])).
% cnf(361,negated_conjecture,($false),360,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 146
% # ...of these trivial                : 5
% # ...subsumed                        : 44
% # ...remaining for further processing: 97
% # Other redundant clauses eliminated : 11
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 0
% # Backward-rewritten                 : 3
% # Generated clauses                  : 235
% # ...of the previous two non-trivial : 198
% # Contextual simplify-reflections    : 4
% # Paramodulations                    : 201
% # Factorizations                     : 8
% # Equation resolutions               : 20
% # Current number of processed clauses: 64
% #    Positive orientable unit clauses: 13
% #    Positive unorientable unit clauses: 2
% #    Negative unit clauses           : 13
% #    Non-unit-clauses                : 36
% # Current number of unprocessed clauses: 104
% # ...number of literals in the above : 325
% # Clause-clause subsumption calls (NU) : 169
% # Rec. Clause-clause subsumption calls : 163
% # Unit Clause-clause subsumption calls : 54
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 16
% # Indexed BW rewrite successes       : 12
% # Backwards rewriting index:    46 leaves,   1.50+/-1.156 terms/leaf
% # Paramod-from index:           20 leaves,   1.40+/-0.663 terms/leaf
% # Paramod-into index:           45 leaves,   1.44+/-1.045 terms/leaf
% # -------------------------------------------------
% # User time              : 0.020 s
% # System time            : 0.002 s
% # Total time             : 0.022 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.11 CPU 0.19 WC
% FINAL PrfWatch: 0.11 CPU 0.19 WC
% SZS output end Solution for /tmp/SystemOnTPTP32426/SET914+1.tptp
% 
%------------------------------------------------------------------------------