TSTP Solution File: SET903+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET903+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:53:14 EDT 2022

% Result   : Theorem 0.42s 1.08s
% Output   : Refutation 0.42s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem  : SET903+1 : TPTP v8.1.0. Released v3.2.0.
% 0.06/0.12  % Command  : bliksem %s
% 0.12/0.33  % Computer : n011.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % DateTime : Sat Jul  9 17:37:40 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.42/1.08  *** allocated 10000 integers for termspace/termends
% 0.42/1.08  *** allocated 10000 integers for clauses
% 0.42/1.08  *** allocated 10000 integers for justifications
% 0.42/1.08  Bliksem 1.12
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Automatic Strategy Selection
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Clauses:
% 0.42/1.08  
% 0.42/1.08  { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.42/1.08  { empty( empty_set ) }.
% 0.42/1.08  { empty( X ), ! empty( set_union2( X, Y ) ) }.
% 0.42/1.08  { empty( X ), ! empty( set_union2( Y, X ) ) }.
% 0.42/1.08  { set_union2( X, X ) = X }.
% 0.42/1.08  { empty( skol1 ) }.
% 0.42/1.08  { ! empty( skol2 ) }.
% 0.42/1.08  { alpha1( X, Y, Z ), Y = singleton( X ) }.
% 0.42/1.08  { alpha1( X, Y, Z ), Z = empty_set }.
% 0.42/1.08  { ! alpha1( X, Y, Z ), alpha2( X, Y, Z ), Y = empty_set }.
% 0.42/1.08  { ! alpha1( X, Y, Z ), alpha2( X, Y, Z ), Z = singleton( X ) }.
% 0.42/1.08  { ! alpha2( X, Y, Z ), alpha1( X, Y, Z ) }.
% 0.42/1.08  { ! Y = empty_set, ! Z = singleton( X ), alpha1( X, Y, Z ) }.
% 0.42/1.08  { ! alpha2( X, Y, Z ), ! singleton( X ) = set_union2( Y, Z ), Y = singleton
% 0.42/1.08    ( X ) }.
% 0.42/1.08  { ! alpha2( X, Y, Z ), ! singleton( X ) = set_union2( Y, Z ), Z = singleton
% 0.42/1.08    ( X ) }.
% 0.42/1.08  { singleton( X ) = set_union2( Y, Z ), alpha2( X, Y, Z ) }.
% 0.42/1.08  { ! Y = singleton( X ), ! Z = singleton( X ), alpha2( X, Y, Z ) }.
% 0.42/1.08  { singleton( skol3 ) = set_union2( skol4, skol5 ) }.
% 0.42/1.08  { ! skol4 = skol5 }.
% 0.42/1.08  { ! skol4 = empty_set }.
% 0.42/1.08  { ! skol5 = empty_set }.
% 0.42/1.08  
% 0.42/1.08  percentage equality = 0.487179, percentage horn = 0.761905
% 0.42/1.08  This is a problem with some equality
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Options Used:
% 0.42/1.08  
% 0.42/1.08  useres =            1
% 0.42/1.08  useparamod =        1
% 0.42/1.08  useeqrefl =         1
% 0.42/1.08  useeqfact =         1
% 0.42/1.08  usefactor =         1
% 0.42/1.08  usesimpsplitting =  0
% 0.42/1.08  usesimpdemod =      5
% 0.42/1.08  usesimpres =        3
% 0.42/1.08  
% 0.42/1.08  resimpinuse      =  1000
% 0.42/1.08  resimpclauses =     20000
% 0.42/1.08  substype =          eqrewr
% 0.42/1.08  backwardsubs =      1
% 0.42/1.08  selectoldest =      5
% 0.42/1.08  
% 0.42/1.08  litorderings [0] =  split
% 0.42/1.08  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.42/1.08  
% 0.42/1.08  termordering =      kbo
% 0.42/1.08  
% 0.42/1.08  litapriori =        0
% 0.42/1.08  termapriori =       1
% 0.42/1.08  litaposteriori =    0
% 0.42/1.08  termaposteriori =   0
% 0.42/1.08  demodaposteriori =  0
% 0.42/1.08  ordereqreflfact =   0
% 0.42/1.08  
% 0.42/1.08  litselect =         negord
% 0.42/1.08  
% 0.42/1.08  maxweight =         15
% 0.42/1.08  maxdepth =          30000
% 0.42/1.08  maxlength =         115
% 0.42/1.08  maxnrvars =         195
% 0.42/1.08  excuselevel =       1
% 0.42/1.08  increasemaxweight = 1
% 0.42/1.08  
% 0.42/1.08  maxselected =       10000000
% 0.42/1.08  maxnrclauses =      10000000
% 0.42/1.08  
% 0.42/1.08  showgenerated =    0
% 0.42/1.08  showkept =         0
% 0.42/1.08  showselected =     0
% 0.42/1.08  showdeleted =      0
% 0.42/1.08  showresimp =       1
% 0.42/1.08  showstatus =       2000
% 0.42/1.08  
% 0.42/1.08  prologoutput =     0
% 0.42/1.08  nrgoals =          5000000
% 0.42/1.08  totalproof =       1
% 0.42/1.08  
% 0.42/1.08  Symbols occurring in the translation:
% 0.42/1.08  
% 0.42/1.08  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.42/1.08  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.42/1.08  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.42/1.08  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.42/1.08  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.42/1.08  set_union2  [37, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.42/1.08  empty_set  [38, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.42/1.08  empty  [39, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.42/1.08  singleton  [41, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.42/1.08  alpha1  [42, 3]      (w:1, o:47, a:1, s:1, b:1), 
% 0.42/1.08  alpha2  [43, 3]      (w:1, o:48, a:1, s:1, b:1), 
% 0.42/1.08  skol1  [44, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.42/1.08  skol2  [45, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.42/1.08  skol3  [46, 0]      (w:1, o:12, a:1, s:1, b:1), 
% 0.42/1.08  skol4  [47, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.42/1.08  skol5  [48, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Starting Search:
% 0.42/1.08  
% 0.42/1.08  *** allocated 15000 integers for clauses
% 0.42/1.08  *** allocated 22500 integers for clauses
% 0.42/1.08  
% 0.42/1.08  Bliksems!, er is een bewijs:
% 0.42/1.08  % SZS status Theorem
% 0.42/1.08  % SZS output start Refutation
% 0.42/1.08  
% 0.42/1.08  (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.42/1.08  (8) {G0,W7,D2,L2,V3,M2} I { alpha1( X, Y, Z ), Z = empty_set }.
% 0.42/1.08  (9) {G0,W11,D2,L3,V3,M3} I { ! alpha1( X, Y, Z ), alpha2( X, Y, Z ), Y = 
% 0.42/1.08    empty_set }.
% 0.42/1.08  (13) {G0,W14,D3,L3,V3,M3} I { ! alpha2( X, Y, Z ), ! singleton( X ) = 
% 0.42/1.08    set_union2( Y, Z ), Y = singleton( X ) }.
% 0.42/1.08  (17) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> singleton( 
% 0.42/1.08    skol3 ) }.
% 0.42/1.08  (18) {G0,W3,D2,L1,V0,M1} I { ! skol5 ==> skol4 }.
% 0.42/1.08  (19) {G0,W3,D2,L1,V0,M1} I { ! skol4 ==> empty_set }.
% 0.42/1.08  (20) {G0,W3,D2,L1,V0,M1} I { ! skol5 ==> empty_set }.
% 0.42/1.08  (34) {G1,W6,D3,L1,V0,M1} P(17,0) { set_union2( skol5, skol4 ) ==> singleton
% 0.42/1.08    ( skol3 ) }.
% 0.42/1.08  (122) {G1,W4,D2,L1,V2,M1} P(8,19);q { alpha1( X, Y, skol4 ) }.
% 0.42/1.08  (123) {G1,W4,D2,L1,V2,M1} P(8,20);q { alpha1( X, Y, skol5 ) }.
% 0.42/1.08  (164) {G2,W7,D2,L2,V2,M2} R(123,9) { alpha2( X, Y, skol5 ), Y = empty_set
% 0.42/1.08     }.
% 0.42/1.08  (320) {G3,W4,D2,L1,V1,M1} P(164,19);q { alpha2( X, skol4, skol5 ) }.
% 0.42/1.08  (325) {G4,W9,D3,L2,V1,M2} R(13,320);d(17) { singleton( X ) ==> skol4, ! 
% 0.42/1.08    singleton( X ) = singleton( skol3 ) }.
% 0.42/1.08  (360) {G5,W12,D3,L3,V1,M3} P(34,13);d(325) { ! alpha2( X, skol5, skol4 ), !
% 0.42/1.08     singleton( X ) = singleton( skol3 ), skol5 ==> skol4 }.
% 0.42/1.08  (377) {G6,W4,D2,L1,V0,M1} Q(360);r(18) { ! alpha2( skol3, skol5, skol4 )
% 0.42/1.08     }.
% 0.42/1.08  (386) {G7,W3,D2,L1,V0,M1} R(377,9);r(122) { skol5 ==> empty_set }.
% 0.42/1.08  (387) {G8,W0,D0,L0,V0,M0} S(386);r(20) {  }.
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  % SZS output end Refutation
% 0.42/1.08  found a proof!
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Unprocessed initial clauses:
% 0.42/1.08  
% 0.42/1.08  (389) {G0,W7,D3,L1,V2,M1}  { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.42/1.08  (390) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.42/1.08  (391) {G0,W6,D3,L2,V2,M2}  { empty( X ), ! empty( set_union2( X, Y ) ) }.
% 0.42/1.08  (392) {G0,W6,D3,L2,V2,M2}  { empty( X ), ! empty( set_union2( Y, X ) ) }.
% 0.42/1.08  (393) {G0,W5,D3,L1,V1,M1}  { set_union2( X, X ) = X }.
% 0.42/1.08  (394) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.42/1.08  (395) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.42/1.08  (396) {G0,W8,D3,L2,V3,M2}  { alpha1( X, Y, Z ), Y = singleton( X ) }.
% 0.42/1.08  (397) {G0,W7,D2,L2,V3,M2}  { alpha1( X, Y, Z ), Z = empty_set }.
% 0.42/1.08  (398) {G0,W11,D2,L3,V3,M3}  { ! alpha1( X, Y, Z ), alpha2( X, Y, Z ), Y = 
% 0.42/1.08    empty_set }.
% 0.42/1.08  (399) {G0,W12,D3,L3,V3,M3}  { ! alpha1( X, Y, Z ), alpha2( X, Y, Z ), Z = 
% 0.42/1.08    singleton( X ) }.
% 0.42/1.08  (400) {G0,W8,D2,L2,V3,M2}  { ! alpha2( X, Y, Z ), alpha1( X, Y, Z ) }.
% 0.42/1.08  (401) {G0,W11,D3,L3,V3,M3}  { ! Y = empty_set, ! Z = singleton( X ), alpha1
% 0.42/1.08    ( X, Y, Z ) }.
% 0.42/1.08  (402) {G0,W14,D3,L3,V3,M3}  { ! alpha2( X, Y, Z ), ! singleton( X ) = 
% 0.42/1.08    set_union2( Y, Z ), Y = singleton( X ) }.
% 0.42/1.08  (403) {G0,W14,D3,L3,V3,M3}  { ! alpha2( X, Y, Z ), ! singleton( X ) = 
% 0.42/1.08    set_union2( Y, Z ), Z = singleton( X ) }.
% 0.42/1.08  (404) {G0,W10,D3,L2,V3,M2}  { singleton( X ) = set_union2( Y, Z ), alpha2( 
% 0.42/1.08    X, Y, Z ) }.
% 0.42/1.08  (405) {G0,W12,D3,L3,V3,M3}  { ! Y = singleton( X ), ! Z = singleton( X ), 
% 0.42/1.08    alpha2( X, Y, Z ) }.
% 0.42/1.08  (406) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) = set_union2( skol4, skol5
% 0.42/1.08     ) }.
% 0.42/1.08  (407) {G0,W3,D2,L1,V0,M1}  { ! skol4 = skol5 }.
% 0.71/1.08  (408) {G0,W3,D2,L1,V0,M1}  { ! skol4 = empty_set }.
% 0.71/1.08  (409) {G0,W3,D2,L1,V0,M1}  { ! skol5 = empty_set }.
% 0.71/1.08  
% 0.71/1.08  
% 0.71/1.08  Total Proof:
% 0.71/1.08  
% 0.71/1.08  subsumption: (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y
% 0.71/1.08    , X ) }.
% 0.71/1.08  parent0: (389) {G0,W7,D3,L1,V2,M1}  { set_union2( X, Y ) = set_union2( Y, X
% 0.71/1.08     ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (8) {G0,W7,D2,L2,V3,M2} I { alpha1( X, Y, Z ), Z = empty_set
% 0.71/1.08     }.
% 0.71/1.08  parent0: (397) {G0,W7,D2,L2,V3,M2}  { alpha1( X, Y, Z ), Z = empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08     Z := Z
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08     1 ==> 1
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (9) {G0,W11,D2,L3,V3,M3} I { ! alpha1( X, Y, Z ), alpha2( X, Y
% 0.71/1.08    , Z ), Y = empty_set }.
% 0.71/1.08  parent0: (398) {G0,W11,D2,L3,V3,M3}  { ! alpha1( X, Y, Z ), alpha2( X, Y, Z
% 0.71/1.08     ), Y = empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08     Z := Z
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08     1 ==> 1
% 0.71/1.08     2 ==> 2
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (13) {G0,W14,D3,L3,V3,M3} I { ! alpha2( X, Y, Z ), ! singleton
% 0.71/1.08    ( X ) = set_union2( Y, Z ), Y = singleton( X ) }.
% 0.71/1.08  parent0: (402) {G0,W14,D3,L3,V3,M3}  { ! alpha2( X, Y, Z ), ! singleton( X
% 0.71/1.08     ) = set_union2( Y, Z ), Y = singleton( X ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08     Z := Z
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08     1 ==> 1
% 0.71/1.08     2 ==> 2
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (452) {G0,W6,D3,L1,V0,M1}  { set_union2( skol4, skol5 ) = singleton
% 0.71/1.08    ( skol3 ) }.
% 0.71/1.08  parent0[0]: (406) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) = set_union2( 
% 0.71/1.08    skol4, skol5 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (17) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 0.71/1.08    singleton( skol3 ) }.
% 0.71/1.08  parent0: (452) {G0,W6,D3,L1,V0,M1}  { set_union2( skol4, skol5 ) = 
% 0.71/1.08    singleton( skol3 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (476) {G0,W3,D2,L1,V0,M1}  { ! skol5 = skol4 }.
% 0.71/1.08  parent0[0]: (407) {G0,W3,D2,L1,V0,M1}  { ! skol4 = skol5 }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (18) {G0,W3,D2,L1,V0,M1} I { ! skol5 ==> skol4 }.
% 0.71/1.08  parent0: (476) {G0,W3,D2,L1,V0,M1}  { ! skol5 = skol4 }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (19) {G0,W3,D2,L1,V0,M1} I { ! skol4 ==> empty_set }.
% 0.71/1.08  parent0: (408) {G0,W3,D2,L1,V0,M1}  { ! skol4 = empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (20) {G0,W3,D2,L1,V0,M1} I { ! skol5 ==> empty_set }.
% 0.71/1.08  parent0: (409) {G0,W3,D2,L1,V0,M1}  { ! skol5 = empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (528) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> set_union2( 
% 0.71/1.08    skol4, skol5 ) }.
% 0.71/1.08  parent0[0]: (17) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 0.71/1.08    singleton( skol3 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  paramod: (529) {G1,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> set_union2( 
% 0.71/1.08    skol5, skol4 ) }.
% 0.71/1.08  parent0[0]: (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y
% 0.71/1.08    , X ) }.
% 0.71/1.08  parent1[0; 3]: (528) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> 
% 0.71/1.08    set_union2( skol4, skol5 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := skol4
% 0.71/1.08     Y := skol5
% 0.71/1.08  end
% 0.71/1.08  substitution1:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (532) {G1,W6,D3,L1,V0,M1}  { set_union2( skol5, skol4 ) ==> 
% 0.71/1.08    singleton( skol3 ) }.
% 0.71/1.08  parent0[0]: (529) {G1,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> set_union2
% 0.71/1.08    ( skol5, skol4 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (34) {G1,W6,D3,L1,V0,M1} P(17,0) { set_union2( skol5, skol4 ) 
% 0.71/1.08    ==> singleton( skol3 ) }.
% 0.71/1.08  parent0: (532) {G1,W6,D3,L1,V0,M1}  { set_union2( skol5, skol4 ) ==> 
% 0.71/1.08    singleton( skol3 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (534) {G0,W3,D2,L1,V0,M1}  { ! empty_set ==> skol4 }.
% 0.71/1.08  parent0[0]: (19) {G0,W3,D2,L1,V0,M1} I { ! skol4 ==> empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  paramod: (538) {G1,W7,D2,L2,V2,M2}  { ! empty_set ==> empty_set, alpha1( X
% 0.71/1.08    , Y, skol4 ) }.
% 0.71/1.08  parent0[1]: (8) {G0,W7,D2,L2,V3,M2} I { alpha1( X, Y, Z ), Z = empty_set
% 0.71/1.08     }.
% 0.71/1.08  parent1[0; 3]: (534) {G0,W3,D2,L1,V0,M1}  { ! empty_set ==> skol4 }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08     Z := skol4
% 0.71/1.08  end
% 0.71/1.08  substitution1:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqrefl: (549) {G0,W4,D2,L1,V2,M1}  { alpha1( X, Y, skol4 ) }.
% 0.71/1.08  parent0[0]: (538) {G1,W7,D2,L2,V2,M2}  { ! empty_set ==> empty_set, alpha1
% 0.71/1.08    ( X, Y, skol4 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (122) {G1,W4,D2,L1,V2,M1} P(8,19);q { alpha1( X, Y, skol4 )
% 0.71/1.08     }.
% 0.71/1.08  parent0: (549) {G0,W4,D2,L1,V2,M1}  { alpha1( X, Y, skol4 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (551) {G0,W3,D2,L1,V0,M1}  { ! empty_set ==> skol5 }.
% 0.71/1.08  parent0[0]: (20) {G0,W3,D2,L1,V0,M1} I { ! skol5 ==> empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  paramod: (555) {G1,W7,D2,L2,V2,M2}  { ! empty_set ==> empty_set, alpha1( X
% 0.71/1.08    , Y, skol5 ) }.
% 0.71/1.08  parent0[1]: (8) {G0,W7,D2,L2,V3,M2} I { alpha1( X, Y, Z ), Z = empty_set
% 0.71/1.08     }.
% 0.71/1.08  parent1[0; 3]: (551) {G0,W3,D2,L1,V0,M1}  { ! empty_set ==> skol5 }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08     Z := skol5
% 0.71/1.08  end
% 0.71/1.08  substitution1:
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqrefl: (566) {G0,W4,D2,L1,V2,M1}  { alpha1( X, Y, skol5 ) }.
% 0.71/1.08  parent0[0]: (555) {G1,W7,D2,L2,V2,M2}  { ! empty_set ==> empty_set, alpha1
% 0.71/1.08    ( X, Y, skol5 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (123) {G1,W4,D2,L1,V2,M1} P(8,20);q { alpha1( X, Y, skol5 )
% 0.71/1.08     }.
% 0.71/1.08  parent0: (566) {G0,W4,D2,L1,V2,M1}  { alpha1( X, Y, skol5 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08  end
% 0.71/1.08  permutation0:
% 0.71/1.08     0 ==> 0
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (567) {G0,W11,D2,L3,V3,M3}  { empty_set = X, ! alpha1( Y, X, Z ), 
% 0.71/1.08    alpha2( Y, X, Z ) }.
% 0.71/1.08  parent0[2]: (9) {G0,W11,D2,L3,V3,M3} I { ! alpha1( X, Y, Z ), alpha2( X, Y
% 0.71/1.08    , Z ), Y = empty_set }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := Y
% 0.71/1.08     Y := X
% 0.71/1.08     Z := Z
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  resolution: (568) {G1,W7,D2,L2,V2,M2}  { empty_set = X, alpha2( Y, X, skol5
% 0.71/1.08     ) }.
% 0.71/1.08  parent0[1]: (567) {G0,W11,D2,L3,V3,M3}  { empty_set = X, ! alpha1( Y, X, Z
% 0.71/1.08     ), alpha2( Y, X, Z ) }.
% 0.71/1.08  parent1[0]: (123) {G1,W4,D2,L1,V2,M1} P(8,20);q { alpha1( X, Y, skol5 ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08     Z := skol5
% 0.71/1.08  end
% 0.71/1.08  substitution1:
% 0.71/1.08     X := Y
% 0.71/1.08     Y := X
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  eqswap: (569) {G1,W7,D2,L2,V2,M2}  { X = empty_set, alpha2( Y, X, skol5 )
% 0.71/1.08     }.
% 0.71/1.08  parent0[0]: (568) {G1,W7,D2,L2,V2,M2}  { empty_set = X, alpha2( Y, X, skol5
% 0.71/1.08     ) }.
% 0.71/1.08  substitution0:
% 0.71/1.08     X := X
% 0.71/1.08     Y := Y
% 0.71/1.08  end
% 0.71/1.08  
% 0.71/1.08  subsumption: (164) {G2,W7,D2,L2,V2,M2} R(123,9) { alpha2( X, Y, skol5 ), Y 
% 0.71/1.08    = empty_set }.
% 0.71/1.08  parent0: (569) {G1,W7,D2,L2,V2,M2}  { X = empty_set, alpha2( Y, X, skol5 )
% 0.71/1.08     }.
% 0.71/1.08  substitution0:
% 16.07/16.53     X := Y
% 16.07/16.53     Y := X
% 16.07/16.53  end
% 16.07/16.53  permutation0:
% 16.07/16.53     0 ==> 1
% 16.07/16.53     1 ==> 0
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  *** allocated 33750 integers for clauses
% 16.07/16.53  eqswap: (571) {G0,W3,D2,L1,V0,M1}  { ! empty_set ==> skol4 }.
% 16.07/16.53  parent0[0]: (19) {G0,W3,D2,L1,V0,M1} I { ! skol4 ==> empty_set }.
% 16.07/16.53  substitution0:
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  paramod: (575) {G1,W7,D2,L2,V1,M2}  { ! empty_set ==> empty_set, alpha2( X
% 16.07/16.53    , skol4, skol5 ) }.
% 16.07/16.53  parent0[1]: (164) {G2,W7,D2,L2,V2,M2} R(123,9) { alpha2( X, Y, skol5 ), Y =
% 16.07/16.53     empty_set }.
% 16.07/16.53  parent1[0; 3]: (571) {G0,W3,D2,L1,V0,M1}  { ! empty_set ==> skol4 }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53     Y := skol4
% 16.07/16.53  end
% 16.07/16.53  substitution1:
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  eqrefl: (613) {G0,W4,D2,L1,V1,M1}  { alpha2( X, skol4, skol5 ) }.
% 16.07/16.53  parent0[0]: (575) {G1,W7,D2,L2,V1,M2}  { ! empty_set ==> empty_set, alpha2
% 16.07/16.53    ( X, skol4, skol5 ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  subsumption: (320) {G3,W4,D2,L1,V1,M1} P(164,19);q { alpha2( X, skol4, 
% 16.07/16.53    skol5 ) }.
% 16.07/16.53  parent0: (613) {G0,W4,D2,L1,V1,M1}  { alpha2( X, skol4, skol5 ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  permutation0:
% 16.07/16.53     0 ==> 0
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  eqswap: (614) {G0,W14,D3,L3,V3,M3}  { ! set_union2( Y, Z ) = singleton( X )
% 16.07/16.53    , ! alpha2( X, Y, Z ), Y = singleton( X ) }.
% 16.07/16.53  parent0[1]: (13) {G0,W14,D3,L3,V3,M3} I { ! alpha2( X, Y, Z ), ! singleton
% 16.07/16.53    ( X ) = set_union2( Y, Z ), Y = singleton( X ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53     Y := Y
% 16.07/16.53     Z := Z
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  resolution: (618) {G1,W10,D3,L2,V1,M2}  { ! set_union2( skol4, skol5 ) = 
% 16.07/16.53    singleton( X ), skol4 = singleton( X ) }.
% 16.07/16.53  parent0[1]: (614) {G0,W14,D3,L3,V3,M3}  { ! set_union2( Y, Z ) = singleton
% 16.07/16.53    ( X ), ! alpha2( X, Y, Z ), Y = singleton( X ) }.
% 16.07/16.53  parent1[0]: (320) {G3,W4,D2,L1,V1,M1} P(164,19);q { alpha2( X, skol4, skol5
% 16.07/16.53     ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53     Y := skol4
% 16.07/16.53     Z := skol5
% 16.07/16.53  end
% 16.07/16.53  substitution1:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  paramod: (619) {G1,W9,D3,L2,V1,M2}  { ! singleton( skol3 ) = singleton( X )
% 16.07/16.53    , skol4 = singleton( X ) }.
% 16.07/16.53  parent0[0]: (17) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 16.07/16.53    singleton( skol3 ) }.
% 16.07/16.53  parent1[0; 2]: (618) {G1,W10,D3,L2,V1,M2}  { ! set_union2( skol4, skol5 ) =
% 16.07/16.53     singleton( X ), skol4 = singleton( X ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53  end
% 16.07/16.53  substitution1:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  eqswap: (621) {G1,W9,D3,L2,V1,M2}  { singleton( X ) = skol4, ! singleton( 
% 16.07/16.53    skol3 ) = singleton( X ) }.
% 16.07/16.53  parent0[1]: (619) {G1,W9,D3,L2,V1,M2}  { ! singleton( skol3 ) = singleton( 
% 16.07/16.53    X ), skol4 = singleton( X ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  eqswap: (622) {G1,W9,D3,L2,V1,M2}  { ! singleton( X ) = singleton( skol3 )
% 16.07/16.53    , singleton( X ) = skol4 }.
% 16.07/16.53  parent0[1]: (621) {G1,W9,D3,L2,V1,M2}  { singleton( X ) = skol4, ! 
% 16.07/16.53    singleton( skol3 ) = singleton( X ) }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  subsumption: (325) {G4,W9,D3,L2,V1,M2} R(13,320);d(17) { singleton( X ) ==>
% 16.07/16.53     skol4, ! singleton( X ) = singleton( skol3 ) }.
% 16.07/16.53  parent0: (622) {G1,W9,D3,L2,V1,M2}  { ! singleton( X ) = singleton( skol3 )
% 16.07/16.53    , singleton( X ) = skol4 }.
% 16.07/16.53  substitution0:
% 16.07/16.53     X := X
% 16.07/16.53  end
% 16.07/16.53  permutation0:
% 16.07/16.53     0 ==> 1
% 16.07/16.53     1 ==> 0
% 16.07/16.53  end
% 16.07/16.53  
% 16.07/16.53  *** allocated 15000 integers for termspace/termends
% 16.07/16.53  *** allocated 22500 integers for termspace/termends
% 16.07/16.53  *** allocated 15000 integers for justifications
% 16.07/16.53  *** allocated 33750 integers for termspace/termends
% 16.07/16.53  *** allocated 22500 integers for justifications
% 16.07/16.53  *** allocated 50625 integers for clauses
% 16.07/16.53  *** allocated 50625 integers for termspace/termends
% 16.07/16.53  *** allocated 33750 integers for justifications
% 16.07/16.53  *** allocated 75937 integers for termspace/termends
% 16.07/16.53  *** allocated 50625 integers for justifications
% 16.07/16.53  *** allocated 75937 integers for clauses
% 16.07/16.53  *** allocated 113905 integers for termspace/termends
% 16.07/16.53  *** allocated 75937 integers for justifications
% 16.07/16.53  *** allocated 170857 integers for termspace/termends
% 16.07/16.53  *** allocated 113905 integers for justifications
% 16.07/16.53  *** allocated 113905 integers for clauses
% 16.07/16.53  *** allocated 256285 integers for termspace/termends
% 16.07/16.53  *** allocated 170857 integers for justifications
% 16.07/16.53  *** allocated 170857 integers for clauses
% 16.07/16.53  *** allocated 384427 integers for termspace/termends
% 16.07/16.53  *** allocated 256285 integers for justifications
% 16.07/16.53  *** allocated 256285 integers for clauses
% 16.07/16.53  *** allocated 576640 integers for termspace/termends
% 16.07/16.53  *** allocated 384427 integers for justifications
% 16.07/16.53  *** allocated 864960 integers for termspace/termends
% 16.07/16.53  *Cputime limit exceeded (core dumped)
%------------------------------------------------------------------------------