TSTP Solution File: SET902+1 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SET902+1 : TPTP v5.0.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art05.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 03:45:25 EST 2010

% Result   : Theorem 0.17s
% Output   : CNFRefutation 0.17s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    6
% Syntax   : Number of formulae    :   44 (  20 unt;   0 def)
%            Number of atoms       :  109 (  91 equ)
%            Maximal formula atoms :    7 (   2 avg)
%            Number of connectives :  117 (  52   ~;  37   |;  27   &)
%                                         (   1 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (   3 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   4 con; 0-2 aty)
%            Number of variables   :   44 (   5 sgn  28   !;   6   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(1,conjecture,
    ! [X1,X2,X3] :
      ~ ( singleton(X1) = set_union2(X2,X3)
        & ~ ( X2 = singleton(X1)
            & X3 = singleton(X1) )
        & ~ ( X2 = empty_set
            & X3 = singleton(X1) )
        & ~ ( X2 = singleton(X1)
            & X3 = empty_set ) ),
    file('/tmp/tmpdblVMp/sel_SET902+1.p_1',t43_zfmisc_1) ).

fof(2,axiom,
    ! [X1,X2] : set_union2(X1,X1) = X1,
    file('/tmp/tmpdblVMp/sel_SET902+1.p_1',idempotence_k2_xboole_0) ).

fof(5,axiom,
    ! [X1,X2] : set_union2(X1,X2) = set_union2(X2,X1),
    file('/tmp/tmpdblVMp/sel_SET902+1.p_1',commutativity_k2_xboole_0) ).

fof(7,axiom,
    ! [X1,X2] :
      ( subset(X1,singleton(X2))
    <=> ( X1 = empty_set
        | X1 = singleton(X2) ) ),
    file('/tmp/tmpdblVMp/sel_SET902+1.p_1',l4_zfmisc_1) ).

fof(8,axiom,
    ! [X1] : singleton(X1) != empty_set,
    file('/tmp/tmpdblVMp/sel_SET902+1.p_1',l1_zfmisc_1) ).

fof(10,axiom,
    ! [X1,X2] : subset(X1,set_union2(X1,X2)),
    file('/tmp/tmpdblVMp/sel_SET902+1.p_1',t7_xboole_1) ).

fof(13,negated_conjecture,
    ~ ! [X1,X2,X3] :
        ~ ( singleton(X1) = set_union2(X2,X3)
          & ~ ( X2 = singleton(X1)
              & X3 = singleton(X1) )
          & ~ ( X2 = empty_set
              & X3 = singleton(X1) )
          & ~ ( X2 = singleton(X1)
              & X3 = empty_set ) ),
    inference(assume_negation,[status(cth)],[1]) ).

fof(17,negated_conjecture,
    ? [X1,X2,X3] :
      ( singleton(X1) = set_union2(X2,X3)
      & ( X2 != singleton(X1)
        | X3 != singleton(X1) )
      & ( X2 != empty_set
        | X3 != singleton(X1) )
      & ( X2 != singleton(X1)
        | X3 != empty_set ) ),
    inference(fof_nnf,[status(thm)],[13]) ).

fof(18,negated_conjecture,
    ? [X4,X5,X6] :
      ( singleton(X4) = set_union2(X5,X6)
      & ( X5 != singleton(X4)
        | X6 != singleton(X4) )
      & ( X5 != empty_set
        | X6 != singleton(X4) )
      & ( X5 != singleton(X4)
        | X6 != empty_set ) ),
    inference(variable_rename,[status(thm)],[17]) ).

fof(19,negated_conjecture,
    ( singleton(esk1_0) = set_union2(esk2_0,esk3_0)
    & ( esk2_0 != singleton(esk1_0)
      | esk3_0 != singleton(esk1_0) )
    & ( esk2_0 != empty_set
      | esk3_0 != singleton(esk1_0) )
    & ( esk2_0 != singleton(esk1_0)
      | esk3_0 != empty_set ) ),
    inference(skolemize,[status(esa)],[18]) ).

cnf(20,negated_conjecture,
    ( esk3_0 != empty_set
    | esk2_0 != singleton(esk1_0) ),
    inference(split_conjunct,[status(thm)],[19]) ).

cnf(21,negated_conjecture,
    ( esk3_0 != singleton(esk1_0)
    | esk2_0 != empty_set ),
    inference(split_conjunct,[status(thm)],[19]) ).

cnf(22,negated_conjecture,
    ( esk3_0 != singleton(esk1_0)
    | esk2_0 != singleton(esk1_0) ),
    inference(split_conjunct,[status(thm)],[19]) ).

cnf(23,negated_conjecture,
    singleton(esk1_0) = set_union2(esk2_0,esk3_0),
    inference(split_conjunct,[status(thm)],[19]) ).

fof(24,plain,
    ! [X3,X4] : set_union2(X3,X3) = X3,
    inference(variable_rename,[status(thm)],[2]) ).

cnf(25,plain,
    set_union2(X1,X1) = X1,
    inference(split_conjunct,[status(thm)],[24]) ).

fof(32,plain,
    ! [X3,X4] : set_union2(X3,X4) = set_union2(X4,X3),
    inference(variable_rename,[status(thm)],[5]) ).

cnf(33,plain,
    set_union2(X1,X2) = set_union2(X2,X1),
    inference(split_conjunct,[status(thm)],[32]) ).

fof(37,plain,
    ! [X1,X2] :
      ( ( ~ subset(X1,singleton(X2))
        | X1 = empty_set
        | X1 = singleton(X2) )
      & ( ( X1 != empty_set
          & X1 != singleton(X2) )
        | subset(X1,singleton(X2)) ) ),
    inference(fof_nnf,[status(thm)],[7]) ).

fof(38,plain,
    ! [X3,X4] :
      ( ( ~ subset(X3,singleton(X4))
        | X3 = empty_set
        | X3 = singleton(X4) )
      & ( ( X3 != empty_set
          & X3 != singleton(X4) )
        | subset(X3,singleton(X4)) ) ),
    inference(variable_rename,[status(thm)],[37]) ).

fof(39,plain,
    ! [X3,X4] :
      ( ( ~ subset(X3,singleton(X4))
        | X3 = empty_set
        | X3 = singleton(X4) )
      & ( X3 != empty_set
        | subset(X3,singleton(X4)) )
      & ( X3 != singleton(X4)
        | subset(X3,singleton(X4)) ) ),
    inference(distribute,[status(thm)],[38]) ).

cnf(42,plain,
    ( X1 = singleton(X2)
    | X1 = empty_set
    | ~ subset(X1,singleton(X2)) ),
    inference(split_conjunct,[status(thm)],[39]) ).

fof(43,plain,
    ! [X2] : singleton(X2) != empty_set,
    inference(variable_rename,[status(thm)],[8]) ).

cnf(44,plain,
    singleton(X1) != empty_set,
    inference(split_conjunct,[status(thm)],[43]) ).

fof(48,plain,
    ! [X3,X4] : subset(X3,set_union2(X3,X4)),
    inference(variable_rename,[status(thm)],[10]) ).

cnf(49,plain,
    subset(X1,set_union2(X1,X2)),
    inference(split_conjunct,[status(thm)],[48]) ).

cnf(58,negated_conjecture,
    subset(esk2_0,singleton(esk1_0)),
    inference(spm,[status(thm)],[49,23,theory(equality)]) ).

cnf(59,plain,
    subset(X1,set_union2(X2,X1)),
    inference(spm,[status(thm)],[49,33,theory(equality)]) ).

cnf(72,negated_conjecture,
    ( singleton(esk1_0) = esk2_0
    | empty_set = esk2_0 ),
    inference(spm,[status(thm)],[42,58,theory(equality)]) ).

cnf(76,negated_conjecture,
    ( esk2_0 = empty_set
    | esk3_0 != empty_set ),
    inference(spm,[status(thm)],[20,72,theory(equality)]) ).

cnf(77,negated_conjecture,
    ( esk2_0 = empty_set
    | esk2_0 != esk3_0 ),
    inference(spm,[status(thm)],[22,72,theory(equality)]) ).

cnf(83,negated_conjecture,
    subset(esk3_0,singleton(esk1_0)),
    inference(spm,[status(thm)],[59,23,theory(equality)]) ).

cnf(89,negated_conjecture,
    ( singleton(esk1_0) = esk3_0
    | empty_set = esk3_0 ),
    inference(spm,[status(thm)],[42,83,theory(equality)]) ).

cnf(94,negated_conjecture,
    ( esk3_0 = empty_set
    | esk2_0 != empty_set ),
    inference(spm,[status(thm)],[21,89,theory(equality)]) ).

cnf(100,negated_conjecture,
    ( esk3_0 = esk2_0
    | esk2_0 = empty_set
    | esk3_0 = empty_set ),
    inference(spm,[status(thm)],[72,89,theory(equality)]) ).

cnf(102,negated_conjecture,
    ( set_union2(esk2_0,empty_set) = singleton(esk1_0)
    | esk2_0 != empty_set ),
    inference(spm,[status(thm)],[23,94,theory(equality)]) ).

cnf(106,negated_conjecture,
    ( set_union2(empty_set,esk2_0) = singleton(esk1_0)
    | esk2_0 != empty_set ),
    inference(rw,[status(thm)],[102,33,theory(equality)]) ).

cnf(118,negated_conjecture,
    ( esk3_0 = esk2_0
    | esk2_0 = empty_set ),
    inference(csr,[status(thm)],[100,76]) ).

cnf(119,negated_conjecture,
    esk2_0 = empty_set,
    inference(csr,[status(thm)],[118,77]) ).

cnf(124,negated_conjecture,
    ( empty_set = singleton(esk1_0)
    | esk2_0 != empty_set ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[106,119,theory(equality)]),25,theory(equality)]) ).

cnf(125,negated_conjecture,
    ( empty_set = singleton(esk1_0)
    | $false ),
    inference(rw,[status(thm)],[124,119,theory(equality)]) ).

cnf(126,negated_conjecture,
    empty_set = singleton(esk1_0),
    inference(cn,[status(thm)],[125,theory(equality)]) ).

cnf(127,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[126,44,theory(equality)]) ).

cnf(128,negated_conjecture,
    $false,
    127,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SET/SET902+1.p
% --creating new selector for []
% -running prover on /tmp/tmpdblVMp/sel_SET902+1.p_1 with time limit 29
% -prover status Theorem
% Problem SET902+1.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SET/SET902+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SET/SET902+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------