TSTP Solution File: SET902+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET902+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:53:14 EDT 2022

% Result   : Theorem 0.43s 1.09s
% Output   : Refutation 0.43s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SET902+1 : TPTP v8.1.0. Released v3.2.0.
% 0.11/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n018.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Sun Jul 10 02:19:57 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.43/1.09  *** allocated 10000 integers for termspace/termends
% 0.43/1.09  *** allocated 10000 integers for clauses
% 0.43/1.09  *** allocated 10000 integers for justifications
% 0.43/1.09  Bliksem 1.12
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  Automatic Strategy Selection
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  Clauses:
% 0.43/1.09  
% 0.43/1.09  { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.43/1.09  { empty( empty_set ) }.
% 0.43/1.09  { empty( X ), ! empty( set_union2( X, Y ) ) }.
% 0.43/1.09  { empty( X ), ! empty( set_union2( Y, X ) ) }.
% 0.43/1.09  { set_union2( X, X ) = X }.
% 0.43/1.09  { ! singleton( X ) = empty_set }.
% 0.43/1.09  { ! subset( X, singleton( Y ) ), X = empty_set, X = singleton( Y ) }.
% 0.43/1.09  { ! X = empty_set, subset( X, singleton( Y ) ) }.
% 0.43/1.09  { ! X = singleton( Y ), subset( X, singleton( Y ) ) }.
% 0.43/1.09  { empty( skol1 ) }.
% 0.43/1.09  { ! empty( skol2 ) }.
% 0.43/1.09  { subset( X, X ) }.
% 0.43/1.09  { singleton( skol3 ) = set_union2( skol4, skol5 ) }.
% 0.43/1.09  { ! skol4 = singleton( skol3 ), ! skol5 = singleton( skol3 ) }.
% 0.43/1.09  { ! skol4 = empty_set, ! skol5 = singleton( skol3 ) }.
% 0.43/1.09  { ! skol4 = singleton( skol3 ), ! skol5 = empty_set }.
% 0.43/1.09  { subset( X, set_union2( X, Y ) ) }.
% 0.43/1.09  
% 0.43/1.09  percentage equality = 0.538462, percentage horn = 0.941176
% 0.43/1.09  This is a problem with some equality
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  Options Used:
% 0.43/1.09  
% 0.43/1.09  useres =            1
% 0.43/1.09  useparamod =        1
% 0.43/1.09  useeqrefl =         1
% 0.43/1.09  useeqfact =         1
% 0.43/1.09  usefactor =         1
% 0.43/1.09  usesimpsplitting =  0
% 0.43/1.09  usesimpdemod =      5
% 0.43/1.09  usesimpres =        3
% 0.43/1.09  
% 0.43/1.09  resimpinuse      =  1000
% 0.43/1.09  resimpclauses =     20000
% 0.43/1.09  substype =          eqrewr
% 0.43/1.09  backwardsubs =      1
% 0.43/1.09  selectoldest =      5
% 0.43/1.09  
% 0.43/1.09  litorderings [0] =  split
% 0.43/1.09  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.43/1.09  
% 0.43/1.09  termordering =      kbo
% 0.43/1.09  
% 0.43/1.09  litapriori =        0
% 0.43/1.09  termapriori =       1
% 0.43/1.09  litaposteriori =    0
% 0.43/1.09  termaposteriori =   0
% 0.43/1.09  demodaposteriori =  0
% 0.43/1.09  ordereqreflfact =   0
% 0.43/1.09  
% 0.43/1.09  litselect =         negord
% 0.43/1.09  
% 0.43/1.09  maxweight =         15
% 0.43/1.09  maxdepth =          30000
% 0.43/1.09  maxlength =         115
% 0.43/1.09  maxnrvars =         195
% 0.43/1.09  excuselevel =       1
% 0.43/1.09  increasemaxweight = 1
% 0.43/1.09  
% 0.43/1.09  maxselected =       10000000
% 0.43/1.09  maxnrclauses =      10000000
% 0.43/1.09  
% 0.43/1.09  showgenerated =    0
% 0.43/1.09  showkept =         0
% 0.43/1.09  showselected =     0
% 0.43/1.09  showdeleted =      0
% 0.43/1.09  showresimp =       1
% 0.43/1.09  showstatus =       2000
% 0.43/1.09  
% 0.43/1.09  prologoutput =     0
% 0.43/1.09  nrgoals =          5000000
% 0.43/1.09  totalproof =       1
% 0.43/1.09  
% 0.43/1.09  Symbols occurring in the translation:
% 0.43/1.09  
% 0.43/1.09  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.43/1.09  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.43/1.09  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.43/1.09  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.43/1.09  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.43/1.09  set_union2  [37, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.43/1.09  empty_set  [38, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 0.43/1.09  empty  [39, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.43/1.09  singleton  [40, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.43/1.09  subset  [41, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.43/1.09  skol1  [43, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.43/1.09  skol2  [44, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.43/1.09  skol3  [45, 0]      (w:1, o:12, a:1, s:1, b:1), 
% 0.43/1.09  skol4  [46, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.43/1.09  skol5  [47, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  Starting Search:
% 0.43/1.09  
% 0.43/1.09  *** allocated 15000 integers for clauses
% 0.43/1.09  *** allocated 22500 integers for clauses
% 0.43/1.09  
% 0.43/1.09  Bliksems!, er is een bewijs:
% 0.43/1.09  % SZS status Theorem
% 0.43/1.09  % SZS output start Refutation
% 0.43/1.09  
% 0.43/1.09  (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.43/1.09  (4) {G0,W5,D3,L1,V1,M1} I { set_union2( X, X ) ==> X }.
% 0.43/1.09  (5) {G0,W4,D3,L1,V1,M1} I { ! singleton( X ) ==> empty_set }.
% 0.43/1.09  (6) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X = empty_set, 
% 0.43/1.09    X = singleton( Y ) }.
% 0.43/1.09  (7) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, singleton( Y ) )
% 0.43/1.09     }.
% 0.43/1.09  (11) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.43/1.09  (12) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> singleton( 
% 0.43/1.09    skol3 ) }.
% 0.43/1.09  (13) {G0,W8,D3,L2,V0,M2} I { ! singleton( skol3 ) ==> skol4, ! singleton( 
% 0.43/1.09    skol3 ) ==> skol5 }.
% 0.43/1.09  (14) {G0,W7,D3,L2,V0,M2} I { ! skol4 ==> empty_set, ! singleton( skol3 ) 
% 0.43/1.09    ==> skol5 }.
% 0.43/1.09  (15) {G0,W7,D3,L2,V0,M2} I { ! singleton( skol3 ) ==> skol4, ! skol5 ==> 
% 0.43/1.09    empty_set }.
% 0.43/1.09  (16) {G0,W5,D3,L1,V2,M1} I { subset( X, set_union2( X, Y ) ) }.
% 0.43/1.09  (18) {G1,W5,D3,L1,V2,M1} P(0,16) { subset( X, set_union2( Y, X ) ) }.
% 0.43/1.09  (25) {G2,W4,D3,L1,V0,M1} P(12,18) { subset( skol5, singleton( skol3 ) ) }.
% 0.43/1.09  (26) {G1,W4,D3,L1,V0,M1} P(12,16) { subset( skol4, singleton( skol3 ) ) }.
% 0.43/1.09  (27) {G1,W6,D3,L1,V0,M1} P(12,0) { set_union2( skol5, skol4 ) ==> singleton
% 0.43/1.09    ( skol3 ) }.
% 0.43/1.09  (38) {G2,W7,D3,L2,V0,M2} R(6,26) { skol4 ==> empty_set, singleton( skol3 ) 
% 0.43/1.09    ==> skol4 }.
% 0.43/1.09  (39) {G3,W7,D3,L2,V0,M2} R(6,25) { skol5 ==> empty_set, singleton( skol3 ) 
% 0.43/1.09    ==> skol5 }.
% 0.43/1.09  (92) {G1,W6,D2,L2,V1,M2} P(6,5);r(7) { ! Y = empty_set, Y = empty_set }.
% 0.43/1.09  (159) {G1,W13,D3,L4,V1,M4} P(6,13) { ! X = skol4, ! X = skol5, ! subset( X
% 0.43/1.09    , singleton( skol3 ) ), X = empty_set }.
% 0.43/1.09  (161) {G3,W6,D2,L2,V0,M2} Q(159);d(38);r(11) { ! skol5 ==> skol4, skol4 ==>
% 0.43/1.09     empty_set }.
% 0.43/1.09  (162) {G4,W6,D2,L2,V0,M2} Q(159);d(39);r(11) { ! skol5 ==> skol4, skol5 ==>
% 0.43/1.09     empty_set }.
% 0.43/1.09  (165) {G5,W7,D3,L2,V0,M2} P(161,27);d(162);d(4) { ! skol5 ==> skol4, 
% 0.43/1.09    singleton( skol3 ) ==> empty_set }.
% 0.43/1.09  (167) {G6,W3,D2,L1,V0,M1} S(165);r(5) { ! skol5 ==> skol4 }.
% 0.43/1.09  (172) {G1,W13,D3,L4,V1,M4} P(6,14) { ! skol4 ==> empty_set, ! X = skol5, ! 
% 0.43/1.09    subset( X, singleton( skol3 ) ), X = empty_set }.
% 0.43/1.09  (174) {G4,W6,D2,L2,V0,M2} Q(172);d(39);r(11) { ! skol4 ==> empty_set, skol5
% 0.43/1.09     ==> empty_set }.
% 0.43/1.09  (175) {G7,W3,D2,L1,V0,M1} P(92,167);d(174);q { ! skol4 ==> empty_set }.
% 0.43/1.09  (184) {G1,W13,D3,L4,V1,M4} P(6,15) { ! X = skol4, ! skol5 ==> empty_set, ! 
% 0.43/1.09    subset( X, singleton( skol3 ) ), X = empty_set }.
% 0.43/1.09  (187) {G3,W6,D2,L2,V0,M2} Q(184);d(38);r(11) { ! skol5 ==> empty_set, skol4
% 0.43/1.09     ==> empty_set }.
% 0.43/1.09  (188) {G8,W3,D2,L1,V0,M1} S(187);r(175) { ! skol5 ==> empty_set }.
% 0.43/1.09  (194) {G8,W4,D3,L1,V0,M1} S(38);r(175) { singleton( skol3 ) ==> skol4 }.
% 0.43/1.09  (303) {G9,W3,D2,L1,V0,M1} S(39);d(194);r(188) { skol5 ==> skol4 }.
% 0.43/1.09  (304) {G10,W0,D0,L0,V0,M0} S(303);r(167) {  }.
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  % SZS output end Refutation
% 0.43/1.09  found a proof!
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  Unprocessed initial clauses:
% 0.43/1.09  
% 0.43/1.09  (306) {G0,W7,D3,L1,V2,M1}  { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.43/1.09  (307) {G0,W2,D2,L1,V0,M1}  { empty( empty_set ) }.
% 0.43/1.09  (308) {G0,W6,D3,L2,V2,M2}  { empty( X ), ! empty( set_union2( X, Y ) ) }.
% 0.43/1.09  (309) {G0,W6,D3,L2,V2,M2}  { empty( X ), ! empty( set_union2( Y, X ) ) }.
% 0.43/1.09  (310) {G0,W5,D3,L1,V1,M1}  { set_union2( X, X ) = X }.
% 0.43/1.09  (311) {G0,W4,D3,L1,V1,M1}  { ! singleton( X ) = empty_set }.
% 0.43/1.09  (312) {G0,W11,D3,L3,V2,M3}  { ! subset( X, singleton( Y ) ), X = empty_set
% 0.43/1.09    , X = singleton( Y ) }.
% 0.43/1.09  (313) {G0,W7,D3,L2,V2,M2}  { ! X = empty_set, subset( X, singleton( Y ) )
% 0.43/1.09     }.
% 0.43/1.09  (314) {G0,W8,D3,L2,V2,M2}  { ! X = singleton( Y ), subset( X, singleton( Y
% 0.43/1.09     ) ) }.
% 0.43/1.09  (315) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.43/1.09  (316) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.43/1.09  (317) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.43/1.09  (318) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) = set_union2( skol4, skol5
% 0.43/1.09     ) }.
% 0.43/1.09  (319) {G0,W8,D3,L2,V0,M2}  { ! skol4 = singleton( skol3 ), ! skol5 = 
% 0.43/1.09    singleton( skol3 ) }.
% 0.43/1.09  (320) {G0,W7,D3,L2,V0,M2}  { ! skol4 = empty_set, ! skol5 = singleton( 
% 0.43/1.09    skol3 ) }.
% 0.43/1.09  (321) {G0,W7,D3,L2,V0,M2}  { ! skol4 = singleton( skol3 ), ! skol5 = 
% 0.43/1.09    empty_set }.
% 0.43/1.09  (322) {G0,W5,D3,L1,V2,M1}  { subset( X, set_union2( X, Y ) ) }.
% 0.43/1.09  
% 0.43/1.09  
% 0.43/1.09  Total Proof:
% 0.43/1.09  
% 0.43/1.09  subsumption: (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y
% 0.43/1.09    , X ) }.
% 0.43/1.09  parent0: (306) {G0,W7,D3,L1,V2,M1}  { set_union2( X, Y ) = set_union2( Y, X
% 0.43/1.09     ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (4) {G0,W5,D3,L1,V1,M1} I { set_union2( X, X ) ==> X }.
% 0.43/1.09  parent0: (310) {G0,W5,D3,L1,V1,M1}  { set_union2( X, X ) = X }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (5) {G0,W4,D3,L1,V1,M1} I { ! singleton( X ) ==> empty_set }.
% 0.43/1.09  parent0: (311) {G0,W4,D3,L1,V1,M1}  { ! singleton( X ) = empty_set }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (6) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X 
% 0.43/1.09    = empty_set, X = singleton( Y ) }.
% 0.43/1.09  parent0: (312) {G0,W11,D3,L3,V2,M3}  { ! subset( X, singleton( Y ) ), X = 
% 0.43/1.09    empty_set, X = singleton( Y ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09     1 ==> 1
% 0.43/1.09     2 ==> 2
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (7) {G0,W7,D3,L2,V2,M2} I { ! X = empty_set, subset( X, 
% 0.43/1.09    singleton( Y ) ) }.
% 0.43/1.09  parent0: (313) {G0,W7,D3,L2,V2,M2}  { ! X = empty_set, subset( X, singleton
% 0.43/1.09    ( Y ) ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09     1 ==> 1
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (11) {G0,W3,D2,L1,V1,M1} I { subset( X, X ) }.
% 0.43/1.09  parent0: (317) {G0,W3,D2,L1,V1,M1}  { subset( X, X ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  eqswap: (351) {G0,W6,D3,L1,V0,M1}  { set_union2( skol4, skol5 ) = singleton
% 0.43/1.09    ( skol3 ) }.
% 0.43/1.09  parent0[0]: (318) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) = set_union2( 
% 0.43/1.09    skol4, skol5 ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (12) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 0.43/1.09    singleton( skol3 ) }.
% 0.43/1.09  parent0: (351) {G0,W6,D3,L1,V0,M1}  { set_union2( skol4, skol5 ) = 
% 0.43/1.09    singleton( skol3 ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  eqswap: (361) {G0,W8,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol5, ! skol4 
% 0.43/1.09    = singleton( skol3 ) }.
% 0.43/1.09  parent0[1]: (319) {G0,W8,D3,L2,V0,M2}  { ! skol4 = singleton( skol3 ), ! 
% 0.43/1.09    skol5 = singleton( skol3 ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  eqswap: (362) {G0,W8,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol4, ! 
% 0.43/1.09    singleton( skol3 ) = skol5 }.
% 0.43/1.09  parent0[1]: (361) {G0,W8,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol5, ! 
% 0.43/1.09    skol4 = singleton( skol3 ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (13) {G0,W8,D3,L2,V0,M2} I { ! singleton( skol3 ) ==> skol4, !
% 0.43/1.09     singleton( skol3 ) ==> skol5 }.
% 0.43/1.09  parent0: (362) {G0,W8,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol4, ! 
% 0.43/1.09    singleton( skol3 ) = skol5 }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09     1 ==> 1
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  eqswap: (375) {G0,W7,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol5, ! skol4 
% 0.43/1.09    = empty_set }.
% 0.43/1.09  parent0[1]: (320) {G0,W7,D3,L2,V0,M2}  { ! skol4 = empty_set, ! skol5 = 
% 0.43/1.09    singleton( skol3 ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (14) {G0,W7,D3,L2,V0,M2} I { ! skol4 ==> empty_set, ! 
% 0.43/1.09    singleton( skol3 ) ==> skol5 }.
% 0.43/1.09  parent0: (375) {G0,W7,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol5, ! skol4
% 0.43/1.09     = empty_set }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 1
% 0.43/1.09     1 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  eqswap: (391) {G0,W7,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol4, ! skol5 
% 0.43/1.09    = empty_set }.
% 0.43/1.09  parent0[0]: (321) {G0,W7,D3,L2,V0,M2}  { ! skol4 = singleton( skol3 ), ! 
% 0.43/1.09    skol5 = empty_set }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (15) {G0,W7,D3,L2,V0,M2} I { ! singleton( skol3 ) ==> skol4, !
% 0.43/1.09     skol5 ==> empty_set }.
% 0.43/1.09  parent0: (391) {G0,W7,D3,L2,V0,M2}  { ! singleton( skol3 ) = skol4, ! skol5
% 0.43/1.09     = empty_set }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09     1 ==> 1
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (16) {G0,W5,D3,L1,V2,M1} I { subset( X, set_union2( X, Y ) )
% 0.43/1.09     }.
% 0.43/1.09  parent0: (322) {G0,W5,D3,L1,V2,M1}  { subset( X, set_union2( X, Y ) ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  paramod: (411) {G1,W5,D3,L1,V2,M1}  { subset( X, set_union2( Y, X ) ) }.
% 0.43/1.09  parent0[0]: (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y
% 0.43/1.09    , X ) }.
% 0.43/1.09  parent1[0; 2]: (16) {G0,W5,D3,L1,V2,M1} I { subset( X, set_union2( X, Y ) )
% 0.43/1.09     }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  substitution1:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (18) {G1,W5,D3,L1,V2,M1} P(0,16) { subset( X, set_union2( Y, X
% 0.43/1.09     ) ) }.
% 0.43/1.09  parent0: (411) {G1,W5,D3,L1,V2,M1}  { subset( X, set_union2( Y, X ) ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09     X := X
% 0.43/1.09     Y := Y
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  paramod: (414) {G1,W4,D3,L1,V0,M1}  { subset( skol5, singleton( skol3 ) )
% 0.43/1.09     }.
% 0.43/1.09  parent0[0]: (12) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 0.43/1.09    singleton( skol3 ) }.
% 0.43/1.09  parent1[0; 2]: (18) {G1,W5,D3,L1,V2,M1} P(0,16) { subset( X, set_union2( Y
% 0.43/1.09    , X ) ) }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  substitution1:
% 0.43/1.09     X := skol5
% 0.43/1.09     Y := skol4
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (25) {G2,W4,D3,L1,V0,M1} P(12,18) { subset( skol5, singleton( 
% 0.43/1.09    skol3 ) ) }.
% 0.43/1.09  parent0: (414) {G1,W4,D3,L1,V0,M1}  { subset( skol5, singleton( skol3 ) )
% 0.43/1.09     }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  paramod: (416) {G1,W4,D3,L1,V0,M1}  { subset( skol4, singleton( skol3 ) )
% 0.43/1.09     }.
% 0.43/1.09  parent0[0]: (12) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 0.43/1.09    singleton( skol3 ) }.
% 0.43/1.09  parent1[0; 2]: (16) {G0,W5,D3,L1,V2,M1} I { subset( X, set_union2( X, Y ) )
% 0.43/1.09     }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  substitution1:
% 0.43/1.09     X := skol4
% 0.43/1.09     Y := skol5
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  subsumption: (26) {G1,W4,D3,L1,V0,M1} P(12,16) { subset( skol4, singleton( 
% 0.43/1.09    skol3 ) ) }.
% 0.43/1.09  parent0: (416) {G1,W4,D3,L1,V0,M1}  { subset( skol4, singleton( skol3 ) )
% 0.43/1.09     }.
% 0.43/1.09  substitution0:
% 0.43/1.09  end
% 0.43/1.09  permutation0:
% 0.43/1.09     0 ==> 0
% 0.43/1.09  end
% 0.43/1.09  
% 0.43/1.09  eqswap: (417) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> set_union2( 
% 1.02/1.45    skol4, skol5 ) }.
% 1.02/1.45  parent0[0]: (12) {G0,W6,D3,L1,V0,M1} I { set_union2( skol4, skol5 ) ==> 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  paramod: (418) {G1,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> set_union2( 
% 1.02/1.45    skol5, skol4 ) }.
% 1.02/1.45  parent0[0]: (0) {G0,W7,D3,L1,V2,M1} I { set_union2( X, Y ) = set_union2( Y
% 1.02/1.45    , X ) }.
% 1.02/1.45  parent1[0; 3]: (417) {G0,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> 
% 1.02/1.45    set_union2( skol4, skol5 ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45     X := skol4
% 1.02/1.45     Y := skol5
% 1.02/1.45  end
% 1.02/1.45  substitution1:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (421) {G1,W6,D3,L1,V0,M1}  { set_union2( skol5, skol4 ) ==> 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  parent0[0]: (418) {G1,W6,D3,L1,V0,M1}  { singleton( skol3 ) ==> set_union2
% 1.02/1.45    ( skol5, skol4 ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  subsumption: (27) {G1,W6,D3,L1,V0,M1} P(12,0) { set_union2( skol5, skol4 ) 
% 1.02/1.45    ==> singleton( skol3 ) }.
% 1.02/1.45  parent0: (421) {G1,W6,D3,L1,V0,M1}  { set_union2( skol5, skol4 ) ==> 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  permutation0:
% 1.02/1.45     0 ==> 0
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (422) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, singleton
% 1.02/1.45    ( Y ) ), X = singleton( Y ) }.
% 1.02/1.45  parent0[1]: (6) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X =
% 1.02/1.45     empty_set, X = singleton( Y ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45     X := X
% 1.02/1.45     Y := Y
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  resolution: (425) {G1,W7,D3,L2,V0,M2}  { empty_set = skol4, skol4 = 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  parent0[1]: (422) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, 
% 1.02/1.45    singleton( Y ) ), X = singleton( Y ) }.
% 1.02/1.45  parent1[0]: (26) {G1,W4,D3,L1,V0,M1} P(12,16) { subset( skol4, singleton( 
% 1.02/1.45    skol3 ) ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45     X := skol4
% 1.02/1.45     Y := skol3
% 1.02/1.45  end
% 1.02/1.45  substitution1:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (427) {G1,W7,D3,L2,V0,M2}  { singleton( skol3 ) = skol4, empty_set 
% 1.02/1.45    = skol4 }.
% 1.02/1.45  parent0[1]: (425) {G1,W7,D3,L2,V0,M2}  { empty_set = skol4, skol4 = 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (428) {G1,W7,D3,L2,V0,M2}  { skol4 = empty_set, singleton( skol3 ) 
% 1.02/1.45    = skol4 }.
% 1.02/1.45  parent0[1]: (427) {G1,W7,D3,L2,V0,M2}  { singleton( skol3 ) = skol4, 
% 1.02/1.45    empty_set = skol4 }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  subsumption: (38) {G2,W7,D3,L2,V0,M2} R(6,26) { skol4 ==> empty_set, 
% 1.02/1.45    singleton( skol3 ) ==> skol4 }.
% 1.02/1.45  parent0: (428) {G1,W7,D3,L2,V0,M2}  { skol4 = empty_set, singleton( skol3 )
% 1.02/1.45     = skol4 }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  permutation0:
% 1.02/1.45     0 ==> 0
% 1.02/1.45     1 ==> 1
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (429) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, singleton
% 1.02/1.45    ( Y ) ), X = singleton( Y ) }.
% 1.02/1.45  parent0[1]: (6) {G0,W11,D3,L3,V2,M3} I { ! subset( X, singleton( Y ) ), X =
% 1.02/1.45     empty_set, X = singleton( Y ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45     X := X
% 1.02/1.45     Y := Y
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  resolution: (432) {G1,W7,D3,L2,V0,M2}  { empty_set = skol5, skol5 = 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  parent0[1]: (429) {G0,W11,D3,L3,V2,M3}  { empty_set = X, ! subset( X, 
% 1.02/1.45    singleton( Y ) ), X = singleton( Y ) }.
% 1.02/1.45  parent1[0]: (25) {G2,W4,D3,L1,V0,M1} P(12,18) { subset( skol5, singleton( 
% 1.02/1.45    skol3 ) ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45     X := skol5
% 1.02/1.45     Y := skol3
% 1.02/1.45  end
% 1.02/1.45  substitution1:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (434) {G1,W7,D3,L2,V0,M2}  { singleton( skol3 ) = skol5, empty_set 
% 1.02/1.45    = skol5 }.
% 1.02/1.45  parent0[1]: (432) {G1,W7,D3,L2,V0,M2}  { empty_set = skol5, skol5 = 
% 1.02/1.45    singleton( skol3 ) }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  eqswap: (435) {G1,W7,D3,L2,V0,M2}  { skol5 = empty_set, singleton( skol3 ) 
% 1.02/1.45    = skol5 }.
% 1.02/1.45  parent0[1]: (434) {G1,W7,D3,L2,V0,M2}  { singleton( skol3 ) = skol5, 
% 1.02/1.45    empty_set = skol5 }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  subsumption: (39) {G3,W7,D3,L2,V0,M2} R(6,25) { skol5 ==> empty_set, 
% 1.02/1.45    singleton( skol3 ) ==> skol5 }.
% 1.02/1.45  parent0: (435) {G1,W7,D3,L2,V0,M2}  { skol5 = empty_set, singleton( skol3 )
% 1.02/1.45     = skol5 }.
% 1.02/1.45  substitution0:
% 1.02/1.45  end
% 1.02/1.45  permutation0:
% 1.02/1.45     0 ==> 0
% 1.02/1.45     1 ==> 1
% 1.02/1.45  end
% 1.02/1.45  
% 1.02/1.45  *** allocated 15000 integers for termspace/termends
% 1.02/1.45  *** allocated 33750 integers for clauses
% 1.02/1.45  *** allocated 22500 integers for termspace/termends
% 1.02/1.45  *** allocated 15000 integers for justifications
% 1.02/1.45  *** allocated 33750 integers for termspace/termends
% 1.02/1.45  *** allocated 22500 integers for justifications
% 1.02/1.45  *** allocated 50625 integers for clauses
% 1.02/1.45  *** allocated 50625 integers for termspace/termends
% 1.02/1.45  *** allocated 33750 integers for justifications
% 1.02/1.45  *** allocated 75937 integers for termspace/termends
% 1.02/1.45  *** allocated 50625 integers for justCputime limit exceeded (core dumped)
%------------------------------------------------------------------------------