TSTP Solution File: SET901+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET901+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:23:01 EDT 2022

% Result   : Theorem 3.98s 1.67s
% Output   : Proof 5.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SET901+1 : TPTP v8.1.0. Released v3.2.0.
% 0.11/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.34  % Computer : n008.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Sun Jul 10 13:54:53 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.59/0.61          ____       _                          
% 0.59/0.61    ___  / __ \_____(_)___  ________  __________
% 0.59/0.61   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.59/0.61  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.59/0.61  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.59/0.61  
% 0.59/0.61  A Theorem Prover for First-Order Logic
% 0.59/0.61  (ePrincess v.1.0)
% 0.59/0.61  
% 0.59/0.61  (c) Philipp Rümmer, 2009-2015
% 0.59/0.61  (c) Peter Backeman, 2014-2015
% 0.59/0.61  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.59/0.61  Free software under GNU Lesser General Public License (LGPL).
% 0.59/0.61  Bug reports to peter@backeman.se
% 0.59/0.61  
% 0.59/0.61  For more information, visit http://user.uu.se/~petba168/breu/
% 0.59/0.61  
% 0.59/0.61  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.67/0.66  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.35/0.91  Prover 0: Preprocessing ...
% 1.60/1.06  Prover 0: Warning: ignoring some quantifiers
% 1.60/1.08  Prover 0: Constructing countermodel ...
% 3.03/1.45  Prover 0: gave up
% 3.03/1.45  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 3.35/1.47  Prover 1: Preprocessing ...
% 3.53/1.51  Prover 1: Constructing countermodel ...
% 3.60/1.58  Prover 1: Exception: f.bc cannot be cast to f.aV
% 3.60/1.58  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 3.60/1.59  Prover 2: Preprocessing ...
% 3.98/1.63  Prover 2: Warning: ignoring some quantifiers
% 3.98/1.63  Prover 2: Constructing countermodel ...
% 3.98/1.67  Prover 2: proved (89ms)
% 3.98/1.67  
% 3.98/1.67  No countermodel exists, formula is valid
% 3.98/1.67  % SZS status Theorem for theBenchmark
% 3.98/1.67  
% 3.98/1.67  Generating proof ... Warning: ignoring some quantifiers
% 4.83/1.87  found it (size 62)
% 4.83/1.87  
% 4.83/1.87  % SZS output start Proof for theBenchmark
% 4.83/1.87  Assumed formulas after preprocessing and simplification: 
% 4.83/1.87  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] : ( ~ (v8 = 0) & empty(v9) = 0 & empty(v7) = v8 & empty(empty_set) = 0 & subset(v0, v3) = v4 & unordered_pair(v1, v2) = v3 &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] :  ! [v14] : (v14 = 0 |  ~ (subset(v10, v13) = v14) |  ~ (unordered_pair(v11, v12) = v13) |  ? [v15] :  ? [v16] : ( ~ (v16 = v10) &  ~ (v15 = v10) & singleton(v12) = v16 & singleton(v11) = v15)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = v10 | v10 = empty_set |  ~ (subset(v10, v13) = 0) |  ~ (unordered_pair(v11, v12) = v13) |  ? [v14] : ((v14 = v10 & singleton(v12) = v10) | (v14 = v10 & singleton(v11) = v10))) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = 0 |  ~ (subset(v10, v10) = v13) |  ~ (unordered_pair(v11, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v13 = 0 |  ~ (subset(empty_set, v12) = v13) |  ~ (unordered_pair(v10, v11) = v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (subset(v13, v12) = v11) |  ~ (subset(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (unordered_pair(v13, v12) = v11) |  ~ (unordered_pair(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (singleton(v12) = v11) |  ~ (singleton(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (empty(v12) = v11) |  ~ (empty(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v11, v10) = v12) | unordered_pair(v10, v11) = v12) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v10, v11) = v12) | unordered_pair(v11, v10) = v12) &  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (subset(v10, v10) = v11)) &  ? [v10] :  ? [v11] :  ? [v12] : subset(v11, v10) = v12 &  ? [v10] :  ? [v11] :  ? [v12] : unordered_pair(v11, v10) = v12 &  ? [v10] :  ? [v11] : singleton(v10) = v11 &  ? [v10] :  ? [v11] : empty(v10) = v11 & ((v4 = 0 &  ~ (v6 = v0) &  ~ (v5 = v0) &  ~ (v3 = v0) &  ~ (v0 = empty_set) & singleton(v2) = v6 & singleton(v1) = v5) | ( ~ (v4 = 0) & (v3 = v0 | v0 = empty_set | (v6 = v0 & singleton(v2) = v0) | (v5 = v0 & singleton(v1) = v0)))))
% 4.83/1.90  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 yields:
% 4.83/1.90  | (1)  ~ (all_0_1_1 = 0) & empty(all_0_0_0) = 0 & empty(all_0_2_2) = all_0_1_1 & empty(empty_set) = 0 & subset(all_0_9_9, all_0_6_6) = all_0_5_5 & unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (subset(v0, v3) = v4) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v5] :  ? [v6] : ( ~ (v6 = v0) &  ~ (v5 = v0) & singleton(v2) = v6 & singleton(v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v0 | v0 = empty_set |  ~ (subset(v0, v3) = 0) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v4] : ((v4 = v0 & singleton(v2) = v0) | (v4 = v0 & singleton(v1) = v0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(v0, v0) = v3) |  ~ (unordered_pair(v1, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(empty_set, v2) = v3) |  ~ (unordered_pair(v0, v1) = v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (empty(v2) = v1) |  ~ (empty(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | unordered_pair(v0, v1) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2) &  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (subset(v0, v0) = v1)) &  ? [v0] :  ? [v1] :  ? [v2] : subset(v1, v0) = v2 &  ? [v0] :  ? [v1] :  ? [v2] : unordered_pair(v1, v0) = v2 &  ? [v0] :  ? [v1] : singleton(v0) = v1 &  ? [v0] :  ? [v1] : empty(v0) = v1 & ((all_0_5_5 = 0 &  ~ (all_0_3_3 = all_0_9_9) &  ~ (all_0_4_4 = all_0_9_9) &  ~ (all_0_6_6 = all_0_9_9) &  ~ (all_0_9_9 = empty_set) & singleton(all_0_7_7) = all_0_3_3 & singleton(all_0_8_8) = all_0_4_4) | ( ~ (all_0_5_5 = 0) & (all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set | (all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9))))
% 5.20/1.91  |
% 5.20/1.91  | Applying alpha-rule on (1) yields:
% 5.20/1.91  | (2) (all_0_5_5 = 0 &  ~ (all_0_3_3 = all_0_9_9) &  ~ (all_0_4_4 = all_0_9_9) &  ~ (all_0_6_6 = all_0_9_9) &  ~ (all_0_9_9 = empty_set) & singleton(all_0_7_7) = all_0_3_3 & singleton(all_0_8_8) = all_0_4_4) | ( ~ (all_0_5_5 = 0) & (all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set | (all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9)))
% 5.20/1.91  | (3)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2)
% 5.20/1.91  | (4)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | unordered_pair(v0, v1) = v2)
% 5.20/1.91  | (5)  ? [v0] :  ? [v1] :  ? [v2] : unordered_pair(v1, v0) = v2
% 5.20/1.91  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(empty_set, v2) = v3) |  ~ (unordered_pair(v0, v1) = v2))
% 5.20/1.91  | (7)  ~ (all_0_1_1 = 0)
% 5.20/1.91  | (8)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = v0 | v0 = empty_set |  ~ (subset(v0, v3) = 0) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v4] : ((v4 = v0 & singleton(v2) = v0) | (v4 = v0 & singleton(v1) = v0)))
% 5.20/1.91  | (9) empty(all_0_2_2) = all_0_1_1
% 5.20/1.91  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (subset(v0, v3) = v4) |  ~ (unordered_pair(v1, v2) = v3) |  ? [v5] :  ? [v6] : ( ~ (v6 = v0) &  ~ (v5 = v0) & singleton(v2) = v6 & singleton(v1) = v5))
% 5.20/1.91  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 5.20/1.91  | (12)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (empty(v2) = v1) |  ~ (empty(v2) = v0))
% 5.20/1.91  | (13) empty(all_0_0_0) = 0
% 5.20/1.91  | (14)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (subset(v0, v0) = v3) |  ~ (unordered_pair(v1, v2) = v0))
% 5.20/1.91  | (15)  ? [v0] :  ? [v1] :  ? [v2] : subset(v1, v0) = v2
% 5.20/1.91  | (16)  ? [v0] :  ? [v1] : empty(v0) = v1
% 5.20/1.91  | (17) unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6
% 5.20/1.91  | (18) subset(all_0_9_9, all_0_6_6) = all_0_5_5
% 5.20/1.91  | (19)  ! [v0] :  ! [v1] : (v1 = 0 |  ~ (subset(v0, v0) = v1))
% 5.20/1.91  | (20)  ? [v0] :  ? [v1] : singleton(v0) = v1
% 5.20/1.91  | (21)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 5.20/1.91  | (22)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0))
% 5.20/1.91  | (23) empty(empty_set) = 0
% 5.20/1.91  |
% 5.20/1.91  | Instantiating formula (10) with all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 and discharging atoms subset(all_0_9_9, all_0_6_6) = all_0_5_5, unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 5.20/1.91  | (24) all_0_5_5 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = all_0_9_9) &  ~ (v0 = all_0_9_9) & singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0)
% 5.20/1.92  |
% 5.20/1.92  | Instantiating formula (4) with all_0_6_6, all_0_8_8, all_0_7_7 and discharging atoms unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 5.20/1.92  | (25) unordered_pair(all_0_7_7, all_0_8_8) = all_0_6_6
% 5.20/1.92  |
% 5.20/1.92  | Instantiating formula (10) with all_0_5_5, all_0_6_6, all_0_8_8, all_0_7_7, all_0_9_9 and discharging atoms subset(all_0_9_9, all_0_6_6) = all_0_5_5, unordered_pair(all_0_7_7, all_0_8_8) = all_0_6_6, yields:
% 5.20/1.92  | (26) all_0_5_5 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = all_0_9_9) &  ~ (v0 = all_0_9_9) & singleton(all_0_7_7) = v0 & singleton(all_0_8_8) = v1)
% 5.20/1.92  |
% 5.20/1.92  +-Applying beta-rule and splitting (2), into two cases.
% 5.20/1.92  |-Branch one:
% 5.20/1.92  | (27) all_0_5_5 = 0 &  ~ (all_0_3_3 = all_0_9_9) &  ~ (all_0_4_4 = all_0_9_9) &  ~ (all_0_6_6 = all_0_9_9) &  ~ (all_0_9_9 = empty_set) & singleton(all_0_7_7) = all_0_3_3 & singleton(all_0_8_8) = all_0_4_4
% 5.20/1.92  |
% 5.20/1.92  	| Applying alpha-rule on (27) yields:
% 5.20/1.92  	| (28)  ~ (all_0_6_6 = all_0_9_9)
% 5.20/1.92  	| (29)  ~ (all_0_3_3 = all_0_9_9)
% 5.20/1.92  	| (30) singleton(all_0_7_7) = all_0_3_3
% 5.20/1.92  	| (31)  ~ (all_0_9_9 = empty_set)
% 5.20/1.92  	| (32) singleton(all_0_8_8) = all_0_4_4
% 5.20/1.92  	| (33)  ~ (all_0_4_4 = all_0_9_9)
% 5.20/1.92  	| (34) all_0_5_5 = 0
% 5.20/1.92  	|
% 5.20/1.92  	| From (34) and (18) follows:
% 5.20/1.92  	| (35) subset(all_0_9_9, all_0_6_6) = 0
% 5.20/1.92  	|
% 5.20/1.92  	| Instantiating formula (8) with all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 and discharging atoms subset(all_0_9_9, all_0_6_6) = 0, unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 5.20/1.92  	| (36) all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set |  ? [v0] : ((v0 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (v0 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9))
% 5.20/1.92  	|
% 5.20/1.92  	+-Applying beta-rule and splitting (36), into two cases.
% 5.20/1.92  	|-Branch one:
% 5.20/1.92  	| (37) all_0_9_9 = empty_set
% 5.20/1.92  	|
% 5.20/1.92  		| Equations (37) can reduce 31 to:
% 5.20/1.92  		| (38) $false
% 5.20/1.92  		|
% 5.20/1.92  		|-The branch is then unsatisfiable
% 5.20/1.92  	|-Branch two:
% 5.20/1.92  	| (31)  ~ (all_0_9_9 = empty_set)
% 5.20/1.92  	| (40) all_0_6_6 = all_0_9_9 |  ? [v0] : ((v0 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (v0 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9))
% 5.20/1.92  	|
% 5.20/1.92  		+-Applying beta-rule and splitting (40), into two cases.
% 5.20/1.92  		|-Branch one:
% 5.20/1.92  		| (41) all_0_6_6 = all_0_9_9
% 5.20/1.92  		|
% 5.20/1.92  			| Equations (41) can reduce 28 to:
% 5.20/1.92  			| (38) $false
% 5.20/1.92  			|
% 5.20/1.92  			|-The branch is then unsatisfiable
% 5.20/1.92  		|-Branch two:
% 5.20/1.92  		| (28)  ~ (all_0_6_6 = all_0_9_9)
% 5.20/1.92  		| (44)  ? [v0] : ((v0 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (v0 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9))
% 5.20/1.92  		|
% 5.20/1.92  			| Instantiating (44) with all_35_0_20 yields:
% 5.20/1.92  			| (45) (all_35_0_20 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_35_0_20 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9)
% 5.20/1.92  			|
% 5.20/1.92  			+-Applying beta-rule and splitting (45), into two cases.
% 5.20/1.92  			|-Branch one:
% 5.20/1.92  			| (46) all_35_0_20 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9
% 5.20/1.92  			|
% 5.20/1.92  				| Applying alpha-rule on (46) yields:
% 5.20/1.92  				| (47) all_35_0_20 = all_0_9_9
% 5.20/1.92  				| (48) singleton(all_0_7_7) = all_0_9_9
% 5.20/1.92  				|
% 5.20/1.92  				| Instantiating formula (21) with all_0_7_7, all_0_9_9, all_0_3_3 and discharging atoms singleton(all_0_7_7) = all_0_3_3, singleton(all_0_7_7) = all_0_9_9, yields:
% 5.20/1.92  				| (49) all_0_3_3 = all_0_9_9
% 5.20/1.92  				|
% 5.20/1.92  				| Equations (49) can reduce 29 to:
% 5.20/1.92  				| (38) $false
% 5.20/1.92  				|
% 5.20/1.92  				|-The branch is then unsatisfiable
% 5.20/1.92  			|-Branch two:
% 5.20/1.92  			| (51) all_35_0_20 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9
% 5.20/1.92  			|
% 5.20/1.92  				| Applying alpha-rule on (51) yields:
% 5.20/1.92  				| (47) all_35_0_20 = all_0_9_9
% 5.20/1.92  				| (53) singleton(all_0_8_8) = all_0_9_9
% 5.20/1.92  				|
% 5.20/1.92  				| Instantiating formula (21) with all_0_8_8, all_0_9_9, all_0_4_4 and discharging atoms singleton(all_0_8_8) = all_0_4_4, singleton(all_0_8_8) = all_0_9_9, yields:
% 5.20/1.92  				| (54) all_0_4_4 = all_0_9_9
% 5.20/1.92  				|
% 5.20/1.92  				| Equations (54) can reduce 33 to:
% 5.20/1.92  				| (38) $false
% 5.20/1.92  				|
% 5.20/1.92  				|-The branch is then unsatisfiable
% 5.20/1.92  |-Branch two:
% 5.20/1.92  | (56)  ~ (all_0_5_5 = 0) & (all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set | (all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9))
% 5.20/1.92  |
% 5.20/1.92  	| Applying alpha-rule on (56) yields:
% 5.20/1.92  	| (57)  ~ (all_0_5_5 = 0)
% 5.20/1.93  	| (58) all_0_6_6 = all_0_9_9 | all_0_9_9 = empty_set | (all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9)
% 5.20/1.93  	|
% 5.20/1.93  	+-Applying beta-rule and splitting (24), into two cases.
% 5.20/1.93  	|-Branch one:
% 5.20/1.93  	| (34) all_0_5_5 = 0
% 5.20/1.93  	|
% 5.20/1.93  		| Equations (34) can reduce 57 to:
% 5.20/1.93  		| (38) $false
% 5.20/1.93  		|
% 5.20/1.93  		|-The branch is then unsatisfiable
% 5.20/1.93  	|-Branch two:
% 5.20/1.93  	| (57)  ~ (all_0_5_5 = 0)
% 5.20/1.93  	| (62)  ? [v0] :  ? [v1] : ( ~ (v1 = all_0_9_9) &  ~ (v0 = all_0_9_9) & singleton(all_0_7_7) = v1 & singleton(all_0_8_8) = v0)
% 5.20/1.93  	|
% 5.20/1.93  		| Instantiating (62) with all_28_0_21, all_28_1_22 yields:
% 5.20/1.93  		| (63)  ~ (all_28_0_21 = all_0_9_9) &  ~ (all_28_1_22 = all_0_9_9) & singleton(all_0_7_7) = all_28_0_21 & singleton(all_0_8_8) = all_28_1_22
% 5.20/1.93  		|
% 5.20/1.93  		| Applying alpha-rule on (63) yields:
% 5.20/1.93  		| (64)  ~ (all_28_0_21 = all_0_9_9)
% 5.20/1.93  		| (65)  ~ (all_28_1_22 = all_0_9_9)
% 5.20/1.93  		| (66) singleton(all_0_7_7) = all_28_0_21
% 5.20/1.93  		| (67) singleton(all_0_8_8) = all_28_1_22
% 5.20/1.93  		|
% 5.20/1.93  		+-Applying beta-rule and splitting (26), into two cases.
% 5.20/1.93  		|-Branch one:
% 5.20/1.93  		| (34) all_0_5_5 = 0
% 5.20/1.93  		|
% 5.20/1.93  			| Equations (34) can reduce 57 to:
% 5.20/1.93  			| (38) $false
% 5.20/1.93  			|
% 5.20/1.93  			|-The branch is then unsatisfiable
% 5.20/1.93  		|-Branch two:
% 5.20/1.93  		| (57)  ~ (all_0_5_5 = 0)
% 5.20/1.93  		| (71)  ? [v0] :  ? [v1] : ( ~ (v1 = all_0_9_9) &  ~ (v0 = all_0_9_9) & singleton(all_0_7_7) = v0 & singleton(all_0_8_8) = v1)
% 5.20/1.93  		|
% 5.20/1.93  			| Instantiating (71) with all_33_0_23, all_33_1_24 yields:
% 5.20/1.93  			| (72)  ~ (all_33_0_23 = all_0_9_9) &  ~ (all_33_1_24 = all_0_9_9) & singleton(all_0_7_7) = all_33_1_24 & singleton(all_0_8_8) = all_33_0_23
% 5.20/1.93  			|
% 5.20/1.93  			| Applying alpha-rule on (72) yields:
% 5.20/1.93  			| (73)  ~ (all_33_0_23 = all_0_9_9)
% 5.20/1.93  			| (74)  ~ (all_33_1_24 = all_0_9_9)
% 5.20/1.93  			| (75) singleton(all_0_7_7) = all_33_1_24
% 5.20/1.93  			| (76) singleton(all_0_8_8) = all_33_0_23
% 5.20/1.93  			|
% 5.20/1.93  			| Instantiating formula (21) with all_0_7_7, all_28_0_21, all_33_1_24 and discharging atoms singleton(all_0_7_7) = all_33_1_24, singleton(all_0_7_7) = all_28_0_21, yields:
% 5.20/1.93  			| (77) all_33_1_24 = all_28_0_21
% 5.20/1.93  			|
% 5.20/1.93  			| Instantiating formula (21) with all_0_8_8, all_28_1_22, all_33_0_23 and discharging atoms singleton(all_0_8_8) = all_33_0_23, singleton(all_0_8_8) = all_28_1_22, yields:
% 5.20/1.93  			| (78) all_33_0_23 = all_28_1_22
% 5.20/1.93  			|
% 5.20/1.93  			| Equations (78) can reduce 73 to:
% 5.20/1.93  			| (65)  ~ (all_28_1_22 = all_0_9_9)
% 5.20/1.93  			|
% 5.20/1.93  			| Equations (77) can reduce 74 to:
% 5.20/1.93  			| (64)  ~ (all_28_0_21 = all_0_9_9)
% 5.20/1.93  			|
% 5.20/1.93  			| From (77) and (75) follows:
% 5.20/1.93  			| (66) singleton(all_0_7_7) = all_28_0_21
% 5.20/1.93  			|
% 5.20/1.93  			| From (78) and (76) follows:
% 5.20/1.93  			| (67) singleton(all_0_8_8) = all_28_1_22
% 5.20/1.93  			|
% 5.20/1.93  			+-Applying beta-rule and splitting (58), into two cases.
% 5.20/1.93  			|-Branch one:
% 5.20/1.93  			| (37) all_0_9_9 = empty_set
% 5.20/1.93  			|
% 5.20/1.93  				| From (37) and (18) follows:
% 5.20/1.93  				| (84) subset(empty_set, all_0_6_6) = all_0_5_5
% 5.20/1.93  				|
% 5.20/1.93  				| Instantiating formula (6) with all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8 and discharging atoms subset(empty_set, all_0_6_6) = all_0_5_5, unordered_pair(all_0_8_8, all_0_7_7) = all_0_6_6, yields:
% 5.20/1.93  				| (34) all_0_5_5 = 0
% 5.20/1.93  				|
% 5.20/1.93  				| Equations (34) can reduce 57 to:
% 5.20/1.93  				| (38) $false
% 5.20/1.93  				|
% 5.20/1.93  				|-The branch is then unsatisfiable
% 5.20/1.93  			|-Branch two:
% 5.20/1.93  			| (31)  ~ (all_0_9_9 = empty_set)
% 5.20/1.93  			| (88) all_0_6_6 = all_0_9_9 | (all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9)
% 5.20/1.93  			|
% 5.20/1.93  				+-Applying beta-rule and splitting (88), into two cases.
% 5.20/1.93  				|-Branch one:
% 5.20/1.93  				| (41) all_0_6_6 = all_0_9_9
% 5.20/1.93  				|
% 5.20/1.93  					| From (41) and (18) follows:
% 5.20/1.93  					| (90) subset(all_0_9_9, all_0_9_9) = all_0_5_5
% 5.20/1.93  					|
% 5.20/1.93  					| From (41) and (17) follows:
% 5.20/1.93  					| (91) unordered_pair(all_0_8_8, all_0_7_7) = all_0_9_9
% 5.20/1.93  					|
% 5.20/1.93  					| Instantiating formula (14) with all_0_5_5, all_0_7_7, all_0_8_8, all_0_9_9 and discharging atoms subset(all_0_9_9, all_0_9_9) = all_0_5_5, unordered_pair(all_0_8_8, all_0_7_7) = all_0_9_9, yields:
% 5.20/1.93  					| (34) all_0_5_5 = 0
% 5.20/1.93  					|
% 5.20/1.93  					| Equations (34) can reduce 57 to:
% 5.20/1.93  					| (38) $false
% 5.20/1.93  					|
% 5.20/1.93  					|-The branch is then unsatisfiable
% 5.20/1.93  				|-Branch two:
% 5.20/1.93  				| (28)  ~ (all_0_6_6 = all_0_9_9)
% 5.20/1.93  				| (95) (all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9) | (all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9)
% 5.20/1.93  				|
% 5.20/1.93  					+-Applying beta-rule and splitting (95), into two cases.
% 5.20/1.93  					|-Branch one:
% 5.20/1.93  					| (96) all_0_3_3 = all_0_9_9 & singleton(all_0_7_7) = all_0_9_9
% 5.20/1.93  					|
% 5.20/1.93  						| Applying alpha-rule on (96) yields:
% 5.20/1.93  						| (49) all_0_3_3 = all_0_9_9
% 5.20/1.93  						| (48) singleton(all_0_7_7) = all_0_9_9
% 5.20/1.93  						|
% 5.20/1.93  						| Instantiating formula (21) with all_0_7_7, all_0_9_9, all_28_0_21 and discharging atoms singleton(all_0_7_7) = all_28_0_21, singleton(all_0_7_7) = all_0_9_9, yields:
% 5.20/1.93  						| (99) all_28_0_21 = all_0_9_9
% 5.20/1.93  						|
% 5.20/1.94  						| Equations (99) can reduce 64 to:
% 5.20/1.94  						| (38) $false
% 5.20/1.94  						|
% 5.20/1.94  						|-The branch is then unsatisfiable
% 5.20/1.94  					|-Branch two:
% 5.20/1.94  					| (101) all_0_4_4 = all_0_9_9 & singleton(all_0_8_8) = all_0_9_9
% 5.20/1.94  					|
% 5.20/1.94  						| Applying alpha-rule on (101) yields:
% 5.20/1.94  						| (54) all_0_4_4 = all_0_9_9
% 5.20/1.94  						| (53) singleton(all_0_8_8) = all_0_9_9
% 5.20/1.94  						|
% 5.20/1.94  						| Instantiating formula (21) with all_0_8_8, all_0_9_9, all_28_1_22 and discharging atoms singleton(all_0_8_8) = all_28_1_22, singleton(all_0_8_8) = all_0_9_9, yields:
% 5.20/1.94  						| (104) all_28_1_22 = all_0_9_9
% 5.20/1.94  						|
% 5.20/1.94  						| Equations (104) can reduce 65 to:
% 5.20/1.94  						| (38) $false
% 5.20/1.94  						|
% 5.20/1.94  						|-The branch is then unsatisfiable
% 5.20/1.94  % SZS output end Proof for theBenchmark
% 5.20/1.94  
% 5.20/1.94  1312ms
%------------------------------------------------------------------------------