TSTP Solution File: SET901+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : SET901+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:14:29 EDT 2022

% Result   : Theorem 3.68s 3.91s
% Output   : Refutation 3.68s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   11
% Syntax   : Number of clauses     :   34 (   9 unt;  10 nHn;  24 RR)
%            Number of literals    :   76 (  49 equ;  29 neg)
%            Maximal clause size   :    5 (   2 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   4 con; 0-2 aty)
%            Number of variables   :   25 (  10 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(2,axiom,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | dollar_c5 != empty_set ),
    file('SET901+1.p',unknown),
    [] ).

cnf(3,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | empty_set != dollar_c5 ),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[2])]),
    [iquote('copy,2,flip.2')] ).

cnf(4,axiom,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | dollar_c5 != singleton(dollar_c4) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(5,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | singleton(dollar_c4) != dollar_c5 ),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[4])]),
    [iquote('copy,4,flip.2')] ).

cnf(6,axiom,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | dollar_c5 != singleton(dollar_c3) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(7,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | singleton(dollar_c3) != dollar_c5 ),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.2')] ).

cnf(8,axiom,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | dollar_c5 != unordered_pair(dollar_c4,dollar_c3) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(9,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | unordered_pair(dollar_c4,dollar_c3) != dollar_c5 ),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[8])]),
    [iquote('copy,8,flip.2')] ).

cnf(10,axiom,
    ( ~ subset(A,unordered_pair(B,C))
    | A = empty_set
    | A = singleton(B)
    | A = singleton(C)
    | A = unordered_pair(B,C) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(11,axiom,
    ( subset(A,unordered_pair(B,C))
    | A != empty_set ),
    file('SET901+1.p',unknown),
    [] ).

cnf(12,axiom,
    ( subset(A,unordered_pair(B,C))
    | A != singleton(B) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(14,axiom,
    ( subset(A,unordered_pair(B,C))
    | A != unordered_pair(B,C) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(16,axiom,
    A = A,
    file('SET901+1.p',unknown),
    [] ).

cnf(17,axiom,
    unordered_pair(A,B) = unordered_pair(B,A),
    file('SET901+1.p',unknown),
    [] ).

cnf(21,axiom,
    ( subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | dollar_c5 = empty_set
    | dollar_c5 = singleton(dollar_c4)
    | dollar_c5 = singleton(dollar_c3)
    | dollar_c5 = unordered_pair(dollar_c4,dollar_c3) ),
    file('SET901+1.p',unknown),
    [] ).

cnf(22,plain,
    ( subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | empty_set = dollar_c5
    | singleton(dollar_c4) = dollar_c5
    | singleton(dollar_c3) = dollar_c5
    | unordered_pair(dollar_c4,dollar_c3) = dollar_c5 ),
    inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[21])])])])]),
    [iquote('copy,21,flip.2,flip.3,flip.4,flip.5')] ).

cnf(24,plain,
    subset(singleton(A),unordered_pair(A,B)),
    inference(hyper,[status(thm)],[16,12]),
    [iquote('hyper,16,12')] ).

cnf(25,plain,
    subset(empty_set,unordered_pair(A,B)),
    inference(hyper,[status(thm)],[16,11]),
    [iquote('hyper,16,11')] ).

cnf(34,plain,
    subset(unordered_pair(A,B),unordered_pair(B,A)),
    inference(hyper,[status(thm)],[17,14]),
    [iquote('hyper,17,14')] ).

cnf(44,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c4,dollar_c3))
    | unordered_pair(dollar_c3,dollar_c4) != dollar_c5 ),
    inference(para_from,[status(thm),theory(equality)],[17,9]),
    [iquote('para_from,17.1.1,9.2.1')] ).

cnf(46,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c3,dollar_c4))
    | singleton(dollar_c3) != dollar_c5 ),
    inference(para_from,[status(thm),theory(equality)],[17,7]),
    [iquote('para_from,17.1.1,7.1.2')] ).

cnf(48,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c3,dollar_c4))
    | empty_set != dollar_c5 ),
    inference(para_from,[status(thm),theory(equality)],[17,3]),
    [iquote('para_from,17.1.1,3.1.2')] ).

cnf(108,plain,
    ( empty_set = dollar_c5
    | singleton(dollar_c4) = dollar_c5
    | singleton(dollar_c3) = dollar_c5
    | unordered_pair(dollar_c4,dollar_c3) = dollar_c5 ),
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[22,10])])])])]),
    [iquote('hyper,22,10,factor_simp,factor_simp,factor_simp,factor_simp')] ).

cnf(217,plain,
    ( ~ subset(dollar_c5,unordered_pair(dollar_c3,dollar_c4))
    | unordered_pair(dollar_c3,dollar_c4) != dollar_c5 ),
    inference(para_into,[status(thm),theory(equality)],[44,17]),
    [iquote('para_into,44.1.2,17.1.1')] ).

cnf(596,plain,
    ( empty_set = dollar_c5
    | singleton(dollar_c4) = dollar_c5
    | singleton(dollar_c3) = dollar_c5
    | unordered_pair(dollar_c3,dollar_c4) = dollar_c5 ),
    inference(para_into,[status(thm),theory(equality)],[108,17]),
    [iquote('para_into,108.4.1,17.1.1')] ).

cnf(637,plain,
    ( subset(dollar_c5,unordered_pair(dollar_c3,dollar_c4))
    | empty_set = dollar_c5
    | singleton(dollar_c4) = dollar_c5
    | singleton(dollar_c3) = dollar_c5 ),
    inference(para_from,[status(thm),theory(equality)],[108,34]),
    [iquote('para_from,108.4.1,34.1.1')] ).

cnf(3489,plain,
    ( empty_set = dollar_c5
    | singleton(dollar_c4) = dollar_c5
    | singleton(dollar_c3) = dollar_c5 ),
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[637,217,596])])])]),
    [iquote('hyper,637,217,596,factor_simp,factor_simp,factor_simp')] ).

cnf(3495,plain,
    ( subset(dollar_c5,unordered_pair(dollar_c4,A))
    | empty_set = dollar_c5
    | singleton(dollar_c3) = dollar_c5 ),
    inference(para_from,[status(thm),theory(equality)],[3489,24]),
    [iquote('para_from,3489.2.1,24.1.1')] ).

cnf(3504,plain,
    ( empty_set = dollar_c5
    | singleton(dollar_c3) = dollar_c5 ),
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[3495,5,3489])])]),
    [iquote('hyper,3495,5,3489,factor_simp,factor_simp')] ).

cnf(3531,plain,
    ( subset(dollar_c5,unordered_pair(dollar_c3,A))
    | empty_set = dollar_c5 ),
    inference(para_from,[status(thm),theory(equality)],[3504,24]),
    [iquote('para_from,3504.2.1,24.1.1')] ).

cnf(3559,plain,
    empty_set = dollar_c5,
    inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[3531,46,3504])]),
    [iquote('hyper,3531,46,3504,factor_simp')] ).

cnf(3599,plain,
    ~ subset(dollar_c5,unordered_pair(dollar_c3,dollar_c4)),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[48]),3559]),16]),
    [iquote('back_demod,48,demod,3559,unit_del,16')] ).

cnf(3602,plain,
    subset(dollar_c5,unordered_pair(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[25]),3559]),
    [iquote('back_demod,25,demod,3559')] ).

cnf(3603,plain,
    $false,
    inference(binary,[status(thm)],[3602,3599]),
    [iquote('binary,3602.1,3599.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : SET901+1 : TPTP v8.1.0. Released v3.2.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n003.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 10:40:26 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.70/1.89  ----- Otter 3.3f, August 2004 -----
% 1.70/1.89  The process was started by sandbox on n003.cluster.edu,
% 1.70/1.89  Wed Jul 27 10:40:26 2022
% 1.70/1.89  The command was "./otter".  The process ID is 20144.
% 1.70/1.89  
% 1.70/1.89  set(prolog_style_variables).
% 1.70/1.89  set(auto).
% 1.70/1.89     dependent: set(auto1).
% 1.70/1.89     dependent: set(process_input).
% 1.70/1.89     dependent: clear(print_kept).
% 1.70/1.89     dependent: clear(print_new_demod).
% 1.70/1.89     dependent: clear(print_back_demod).
% 1.70/1.89     dependent: clear(print_back_sub).
% 1.70/1.89     dependent: set(control_memory).
% 1.70/1.89     dependent: assign(max_mem, 12000).
% 1.70/1.89     dependent: assign(pick_given_ratio, 4).
% 1.70/1.89     dependent: assign(stats_level, 1).
% 1.70/1.89     dependent: assign(max_seconds, 10800).
% 1.70/1.89  clear(print_given).
% 1.70/1.89  
% 1.70/1.89  formula_list(usable).
% 1.70/1.89  all A (A=A).
% 1.70/1.89  all A B (unordered_pair(A,B)=unordered_pair(B,A)).
% 1.70/1.89  all A B subset(A,A).
% 1.70/1.89  empty(empty_set).
% 1.70/1.89  exists A empty(A).
% 1.70/1.89  exists A (-empty(A)).
% 1.70/1.89  -(all A B C (subset(A,unordered_pair(B,C))<-> -(A!=empty_set&A!=singleton(B)&A!=singleton(C)&A!=unordered_pair(B,C)))).
% 1.70/1.89  all A B C (subset(A,unordered_pair(B,C))<-> -(A!=empty_set&A!=singleton(B)&A!=singleton(C)&A!=unordered_pair(B,C))).
% 1.70/1.89  end_of_list.
% 1.70/1.89  
% 1.70/1.89  -------> usable clausifies to:
% 1.70/1.89  
% 1.70/1.89  list(usable).
% 1.70/1.89  0 [] A=A.
% 1.70/1.89  0 [] unordered_pair(A,B)=unordered_pair(B,A).
% 1.70/1.89  0 [] subset(A,A).
% 1.70/1.89  0 [] empty(empty_set).
% 1.70/1.89  0 [] empty($c1).
% 1.70/1.89  0 [] -empty($c2).
% 1.70/1.89  0 [] subset($c5,unordered_pair($c4,$c3))|$c5=empty_set|$c5=singleton($c4)|$c5=singleton($c3)|$c5=unordered_pair($c4,$c3).
% 1.70/1.89  0 [] -subset($c5,unordered_pair($c4,$c3))|$c5!=empty_set.
% 1.70/1.89  0 [] -subset($c5,unordered_pair($c4,$c3))|$c5!=singleton($c4).
% 1.70/1.89  0 [] -subset($c5,unordered_pair($c4,$c3))|$c5!=singleton($c3).
% 1.70/1.89  0 [] -subset($c5,unordered_pair($c4,$c3))|$c5!=unordered_pair($c4,$c3).
% 1.70/1.89  0 [] -subset(A,unordered_pair(B,C))|A=empty_set|A=singleton(B)|A=singleton(C)|A=unordered_pair(B,C).
% 1.70/1.89  0 [] subset(A,unordered_pair(B,C))|A!=empty_set.
% 1.70/1.89  0 [] subset(A,unordered_pair(B,C))|A!=singleton(B).
% 1.70/1.89  0 [] subset(A,unordered_pair(B,C))|A!=singleton(C).
% 1.70/1.89  0 [] subset(A,unordered_pair(B,C))|A!=unordered_pair(B,C).
% 1.70/1.89  end_of_list.
% 1.70/1.89  
% 1.70/1.89  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=5.
% 1.70/1.89  
% 1.70/1.89  This ia a non-Horn set with equality.  The strategy will be
% 1.70/1.89  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.70/1.89  deletion, with positive clauses in sos and nonpositive
% 1.70/1.89  clauses in usable.
% 1.70/1.89  
% 1.70/1.89     dependent: set(knuth_bendix).
% 1.70/1.89     dependent: set(anl_eq).
% 1.70/1.89     dependent: set(para_from).
% 1.70/1.89     dependent: set(para_into).
% 1.70/1.89     dependent: clear(para_from_right).
% 1.70/1.89     dependent: clear(para_into_right).
% 1.70/1.89     dependent: set(para_from_vars).
% 1.70/1.89     dependent: set(eq_units_both_ways).
% 1.70/1.89     dependent: set(dynamic_demod_all).
% 1.70/1.89     dependent: set(dynamic_demod).
% 1.70/1.89     dependent: set(order_eq).
% 1.70/1.89     dependent: set(back_demod).
% 1.70/1.89     dependent: set(lrpo).
% 1.70/1.89     dependent: set(hyper_res).
% 1.70/1.89     dependent: set(unit_deletion).
% 1.70/1.89     dependent: set(factor).
% 1.70/1.89  
% 1.70/1.89  ------------> process usable:
% 1.70/1.89  ** KEPT (pick-wt=2): 1 [] -empty($c2).
% 1.70/1.89  ** KEPT (pick-wt=8): 3 [copy,2,flip.2] -subset($c5,unordered_pair($c4,$c3))|empty_set!=$c5.
% 1.70/1.89  ** KEPT (pick-wt=9): 5 [copy,4,flip.2] -subset($c5,unordered_pair($c4,$c3))|singleton($c4)!=$c5.
% 1.70/1.89  ** KEPT (pick-wt=9): 7 [copy,6,flip.2] -subset($c5,unordered_pair($c4,$c3))|singleton($c3)!=$c5.
% 1.70/1.89  ** KEPT (pick-wt=10): 9 [copy,8,flip.2] -subset($c5,unordered_pair($c4,$c3))|unordered_pair($c4,$c3)!=$c5.
% 1.70/1.89  ** KEPT (pick-wt=21): 10 [] -subset(A,unordered_pair(B,C))|A=empty_set|A=singleton(B)|A=singleton(C)|A=unordered_pair(B,C).
% 1.70/1.89  ** KEPT (pick-wt=8): 11 [] subset(A,unordered_pair(B,C))|A!=empty_set.
% 1.70/1.89  ** KEPT (pick-wt=9): 12 [] subset(A,unordered_pair(B,C))|A!=singleton(B).
% 1.70/1.89  ** KEPT (pick-wt=9): 13 [] subset(A,unordered_pair(B,C))|A!=singleton(C).
% 1.70/1.89  ** KEPT (pick-wt=10): 14 [] subset(A,unordered_pair(B,C))|A!=unordered_pair(B,C).
% 1.70/1.89  
% 1.70/1.89  ------------> process sos:
% 1.70/1.89  ** KEPT (pick-wt=3): 16 [] A=A.
% 1.70/1.89  ** KEPT (pick-wt=7): 17 [] unordered_pair(A,B)=unordered_pair(B,A).
% 1.70/1.89  ** KEPT (pick-wt=3): 18 [] subset(A,A).
% 1.70/1.89  ** KEPT (pick-wt=2): 19 [] empty(empty_set).
% 1.70/1.89  ** KEPT (pick-wt=2): 20 [] empty($c1).
% 1.70/1.89  ** KEPT (pick-wt=21): 22 [copy,21,flip.2,flip.3,flip.4,flip.5] subset($c5,unordered_pair($c4,$c3))|empty_set=$c5|singleton($c4)=$c5|singleton($c3)=$c5|unordered_pair($c4,$c3)=$c5.
% 1.70/1.89    Following clause subsumed by 16 during input processing: 0 [copy,16,flip.1] A=A.
% 3.68/3.91    Following clause subsumed by 17 during input processing: 0 [copy,17,flip.1] unordered_pair(A,B)=unordered_pair(B,A).
% 3.68/3.91  
% 3.68/3.91  ======= end of input processing =======
% 3.68/3.91  
% 3.68/3.91  =========== start of search ===========
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Resetting weight limit to 21.
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Resetting weight limit to 21.
% 3.68/3.91  
% 3.68/3.91  sos_size=3023
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Resetting weight limit to 19.
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Resetting weight limit to 19.
% 3.68/3.91  
% 3.68/3.91  sos_size=2486
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Resetting weight limit to 18.
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Resetting weight limit to 18.
% 3.68/3.91  
% 3.68/3.91  sos_size=2413
% 3.68/3.91  
% 3.68/3.91  -------- PROOF -------- 
% 3.68/3.91  
% 3.68/3.91  ----> UNIT CONFLICT at   2.01 sec ----> 3603 [binary,3602.1,3599.1] $F.
% 3.68/3.91  
% 3.68/3.91  Length of proof is 22.  Level of proof is 9.
% 3.68/3.91  
% 3.68/3.91  ---------------- PROOF ----------------
% 3.68/3.91  % SZS status Theorem
% 3.68/3.91  % SZS output start Refutation
% See solution above
% 3.68/3.91  ------------ end of proof -------------
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Search stopped by max_proofs option.
% 3.68/3.91  
% 3.68/3.91  
% 3.68/3.91  Search stopped by max_proofs option.
% 3.68/3.91  
% 3.68/3.91  ============ end of search ============
% 3.68/3.91  
% 3.68/3.91  -------------- statistics -------------
% 3.68/3.91  clauses given                137
% 3.68/3.91  clauses generated          26125
% 3.68/3.91  clauses kept                3596
% 3.68/3.91  clauses forward subsumed    3996
% 3.68/3.91  clauses back subsumed       1704
% 3.68/3.91  Kbytes malloced             4882
% 3.68/3.91  
% 3.68/3.91  ----------- times (seconds) -----------
% 3.68/3.91  user CPU time          2.01          (0 hr, 0 min, 2 sec)
% 3.68/3.91  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 3.68/3.91  wall-clock time        4             (0 hr, 0 min, 4 sec)
% 3.68/3.91  
% 3.68/3.91  That finishes the proof of the theorem.
% 3.68/3.91  
% 3.68/3.91  Process 20144 finished Wed Jul 27 10:40:30 2022
% 3.68/3.91  Otter interrupted
% 3.68/3.91  PROOF FOUND
%------------------------------------------------------------------------------