TSTP Solution File: SET886+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : SET886+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 03:38:07 EDT 2022

% Result   : Theorem 0.13s 0.35s
% Output   : CNFRefutation 0.13s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :   16
% Syntax   : Number of formulae    :   62 (  29 unt;   0 def)
%            Number of atoms       :  105 (  80 equ)
%            Maximal formula atoms :    3 (   1 avg)
%            Number of connectives :   87 (  44   ~;  37   |;   2   &)
%                                         (   0 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   3 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    4 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   3 con; 0-2 aty)
%            Number of variables   :   65 (   3 sgn  27   !;   3   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(t26_zfmisc_1,axiom,
    ! [A,B,C] :
      ( subset(unordered_pair(A,B),singleton(C))
     => A = C ) ).

fof(t27_zfmisc_1,conjecture,
    ! [A,B,C] :
      ( subset(unordered_pair(A,B),singleton(C))
     => unordered_pair(A,B) = singleton(C) ) ).

fof(t69_enumset1,axiom,
    ! [A] : unordered_pair(A,A) = singleton(A) ).

fof(subgoal_0,plain,
    ! [A,B,C] :
      ( subset(unordered_pair(A,B),singleton(C))
     => unordered_pair(A,B) = singleton(C) ),
    inference(strip,[],[t27_zfmisc_1]) ).

fof(negate_0_0,plain,
    ~ ! [A,B,C] :
        ( subset(unordered_pair(A,B),singleton(C))
       => unordered_pair(A,B) = singleton(C) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ? [A,B,C] :
      ( unordered_pair(A,B) != singleton(C)
      & subset(unordered_pair(A,B),singleton(C)) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_1,plain,
    ( unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_C)
    & subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)) ),
    inference(skolemize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_C),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_4,plain,
    ! [A,B,C] :
      ( ~ subset(unordered_pair(A,B),singleton(C))
      | A = C ),
    inference(canonicalize,[],[t26_zfmisc_1]) ).

fof(normalize_0_5,plain,
    ! [A,B,C] :
      ( ~ subset(unordered_pair(A,B),singleton(C))
      | A = C ),
    inference(specialize,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [A] : unordered_pair(A,A) = singleton(A),
    inference(canonicalize,[],[t69_enumset1]) ).

fof(normalize_0_7,plain,
    ! [A] : unordered_pair(A,A) = singleton(A),
    inference(specialize,[],[normalize_0_6]) ).

fof(normalize_0_8,plain,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A),
    inference(canonicalize,[],[commutativity_k2_tarski]) ).

fof(normalize_0_9,plain,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A),
    inference(specialize,[],[normalize_0_8]) ).

cnf(refute_0_0,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_C),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)),
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ( ~ subset(unordered_pair(A,B),singleton(C))
    | A = C ),
    inference(canonicalize,[],[normalize_0_5]) ).

cnf(refute_0_3,plain,
    ( ~ subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C))
    | skolemFOFtoCNF_A_2 = skolemFOFtoCNF_C ),
    inference(subst,[],[refute_0_2:[bind(A,$fot(skolemFOFtoCNF_A_2)),bind(B,$fot(skolemFOFtoCNF_B)),bind(C,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_4,plain,
    skolemFOFtoCNF_A_2 = skolemFOFtoCNF_C,
    inference(resolve,[$cnf( subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)) )],[refute_0_1,refute_0_3]) ).

cnf(refute_0_5,plain,
    X = X,
    introduced(tautology,[refl,[$fot(X)]]) ).

cnf(refute_0_6,plain,
    ( X != X
    | X != Y
    | Y = X ),
    introduced(tautology,[equality,[$cnf( $equal(X,X) ),[0],$fot(Y)]]) ).

cnf(refute_0_7,plain,
    ( X != Y
    | Y = X ),
    inference(resolve,[$cnf( $equal(X,X) )],[refute_0_5,refute_0_6]) ).

cnf(refute_0_8,plain,
    ( skolemFOFtoCNF_A_2 != skolemFOFtoCNF_C
    | skolemFOFtoCNF_C = skolemFOFtoCNF_A_2 ),
    inference(subst,[],[refute_0_7:[bind(X,$fot(skolemFOFtoCNF_A_2)),bind(Y,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_9,plain,
    skolemFOFtoCNF_C = skolemFOFtoCNF_A_2,
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_A_2,skolemFOFtoCNF_C) )],[refute_0_4,refute_0_8]) ).

cnf(refute_0_10,plain,
    singleton(skolemFOFtoCNF_C) = singleton(skolemFOFtoCNF_C),
    introduced(tautology,[refl,[$fot(singleton(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_11,plain,
    ( singleton(skolemFOFtoCNF_C) != singleton(skolemFOFtoCNF_C)
    | skolemFOFtoCNF_C != skolemFOFtoCNF_A_2
    | singleton(skolemFOFtoCNF_C) = singleton(skolemFOFtoCNF_A_2) ),
    introduced(tautology,[equality,[$cnf( $equal(singleton(skolemFOFtoCNF_C),singleton(skolemFOFtoCNF_C)) ),[1,0],$fot(skolemFOFtoCNF_A_2)]]) ).

cnf(refute_0_12,plain,
    ( skolemFOFtoCNF_C != skolemFOFtoCNF_A_2
    | singleton(skolemFOFtoCNF_C) = singleton(skolemFOFtoCNF_A_2) ),
    inference(resolve,[$cnf( $equal(singleton(skolemFOFtoCNF_C),singleton(skolemFOFtoCNF_C)) )],[refute_0_10,refute_0_11]) ).

cnf(refute_0_13,plain,
    singleton(skolemFOFtoCNF_C) = singleton(skolemFOFtoCNF_A_2),
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_C,skolemFOFtoCNF_A_2) )],[refute_0_9,refute_0_12]) ).

cnf(refute_0_14,plain,
    ( singleton(skolemFOFtoCNF_C) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_C) ),
    introduced(tautology,[equality,[$cnf( ~ $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)) ),[1],$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_15,plain,
    ( unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( $equal(singleton(skolemFOFtoCNF_C),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_13,refute_0_14]) ).

cnf(refute_0_16,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_A_2),
    inference(resolve,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)) )],[refute_0_15,refute_0_0]) ).

cnf(refute_0_17,plain,
    unordered_pair(A,A) = singleton(A),
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_18,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2) = singleton(skolemFOFtoCNF_A_2),
    inference(subst,[],[refute_0_17:[bind(A,$fot(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_19,plain,
    ( singleton(skolemFOFtoCNF_C) != singleton(skolemFOFtoCNF_A_2)
    | ~ subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C))
    | subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)) ),
    introduced(tautology,[equality,[$cnf( subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)) ),[1],$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_20,plain,
    ( ~ subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C))
    | subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)) ),
    inference(resolve,[$cnf( $equal(singleton(skolemFOFtoCNF_C),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_13,refute_0_19]) ).

cnf(refute_0_21,plain,
    subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)),
    inference(resolve,[$cnf( subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_C)) )],[refute_0_1,refute_0_20]) ).

cnf(refute_0_22,plain,
    ( ~ subset(unordered_pair(X_4,X_5),singleton(X_6))
    | X_4 = X_6 ),
    inference(subst,[],[refute_0_2:[bind(A,$fot(X_4)),bind(B,$fot(X_5)),bind(C,$fot(X_6))]]) ).

cnf(refute_0_23,plain,
    unordered_pair(A,B) = unordered_pair(B,A),
    inference(canonicalize,[],[normalize_0_9]) ).

cnf(refute_0_24,plain,
    unordered_pair(X_5,X_4) = unordered_pair(X_4,X_5),
    inference(subst,[],[refute_0_23:[bind(A,$fot(X_5)),bind(B,$fot(X_4))]]) ).

cnf(refute_0_25,plain,
    ( unordered_pair(X_5,X_4) != unordered_pair(X_4,X_5)
    | unordered_pair(X_4,X_5) = unordered_pair(X_5,X_4) ),
    inference(subst,[],[refute_0_7:[bind(X,$fot(unordered_pair(X_5,X_4))),bind(Y,$fot(unordered_pair(X_4,X_5)))]]) ).

cnf(refute_0_26,plain,
    unordered_pair(X_4,X_5) = unordered_pair(X_5,X_4),
    inference(resolve,[$cnf( $equal(unordered_pair(X_5,X_4),unordered_pair(X_4,X_5)) )],[refute_0_24,refute_0_25]) ).

cnf(refute_0_27,plain,
    ( unordered_pair(X_4,X_5) != unordered_pair(X_5,X_4)
    | ~ subset(unordered_pair(X_5,X_4),singleton(X_6))
    | subset(unordered_pair(X_4,X_5),singleton(X_6)) ),
    introduced(tautology,[equality,[$cnf( ~ subset(unordered_pair(X_4,X_5),singleton(X_6)) ),[0],$fot(unordered_pair(X_5,X_4))]]) ).

cnf(refute_0_28,plain,
    ( ~ subset(unordered_pair(X_5,X_4),singleton(X_6))
    | subset(unordered_pair(X_4,X_5),singleton(X_6)) ),
    inference(resolve,[$cnf( $equal(unordered_pair(X_4,X_5),unordered_pair(X_5,X_4)) )],[refute_0_26,refute_0_27]) ).

cnf(refute_0_29,plain,
    ( ~ subset(unordered_pair(X_5,X_4),singleton(X_6))
    | X_4 = X_6 ),
    inference(resolve,[$cnf( subset(unordered_pair(X_4,X_5),singleton(X_6)) )],[refute_0_28,refute_0_22]) ).

cnf(refute_0_30,plain,
    ( ~ subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2))
    | skolemFOFtoCNF_B = skolemFOFtoCNF_A_2 ),
    inference(subst,[],[refute_0_29:[bind(X_4,$fot(skolemFOFtoCNF_B)),bind(X_5,$fot(skolemFOFtoCNF_A_2)),bind(X_6,$fot(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_31,plain,
    skolemFOFtoCNF_B = skolemFOFtoCNF_A_2,
    inference(resolve,[$cnf( subset(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_21,refute_0_30]) ).

cnf(refute_0_32,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),
    introduced(tautology,[refl,[$fot(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B))]]) ).

cnf(refute_0_33,plain,
    ( skolemFOFtoCNF_B != skolemFOFtoCNF_A_2
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2) ),
    introduced(tautology,[equality,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) ),[1,1],$fot(skolemFOFtoCNF_A_2)]]) ).

cnf(refute_0_34,plain,
    ( skolemFOFtoCNF_B != skolemFOFtoCNF_A_2
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2) ),
    inference(resolve,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) )],[refute_0_32,refute_0_33]) ).

cnf(refute_0_35,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2),
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_B,skolemFOFtoCNF_A_2) )],[refute_0_31,refute_0_34]) ).

cnf(refute_0_36,plain,
    ( Y != X
    | Y != Z
    | X = Z ),
    introduced(tautology,[equality,[$cnf( $equal(Y,Z) ),[0],$fot(X)]]) ).

cnf(refute_0_37,plain,
    ( X != Y
    | Y != Z
    | X = Z ),
    inference(resolve,[$cnf( $equal(Y,X) )],[refute_0_7,refute_0_36]) ).

cnf(refute_0_38,plain,
    ( unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_A_2) ),
    inference(subst,[],[refute_0_37:[bind(X,$fot(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B))),bind(Y,$fot(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2))),bind(Z,$fot(singleton(skolemFOFtoCNF_A_2)))]]) ).

cnf(refute_0_39,plain,
    ( unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_A_2) ),
    inference(resolve,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2)) )],[refute_0_35,refute_0_38]) ).

cnf(refute_0_40,plain,
    unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_A_2),
    inference(resolve,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_18,refute_0_39]) ).

cnf(refute_0_41,plain,
    ( singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_A_2) ),
    introduced(tautology,[equality,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)) ),[1],$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_42,plain,
    ( singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) = singleton(skolemFOFtoCNF_A_2) ),
    inference(resolve,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_40,refute_0_41]) ).

cnf(refute_0_43,plain,
    singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2),
    inference(resolve,[$cnf( $equal(unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_42,refute_0_16]) ).

cnf(refute_0_44,plain,
    singleton(skolemFOFtoCNF_A_2) = singleton(skolemFOFtoCNF_A_2),
    introduced(tautology,[refl,[$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_45,plain,
    $false,
    inference(resolve,[$cnf( $equal(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_44,refute_0_43]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SET886+1 : TPTP v8.1.0. Released v3.2.0.
% 0.07/0.13  % Command  : metis --show proof --show saturation %s
% 0.13/0.34  % Computer : n014.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Mon Jul 11 08:44:04 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.13/0.35  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.13/0.35  
% 0.13/0.35  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.13/0.35  
%------------------------------------------------------------------------------