TSTP Solution File: SET877+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : SET877+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 03:38:03 EDT 2022

% Result   : Theorem 0.12s 0.35s
% Output   : CNFRefutation 0.12s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   10
% Syntax   : Number of formulae    :   45 (  16 unt;   0 def)
%            Number of atoms       :   93 (  71 equ)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives :   88 (  40   ~;  33   |;   5   &)
%                                         (   6 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    4 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   66 (   0 sgn  31   !;   4   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(d1_tarski,axiom,
    ! [A,B] :
      ( B = singleton(A)
    <=> ! [C] :
          ( in(C,B)
        <=> C = A ) ) ).

fof(l30_zfmisc_1,axiom,
    ! [A,B] :
      ( set_intersection2(A,singleton(B)) = singleton(B)
     => in(B,A) ) ).

fof(t18_zfmisc_1,conjecture,
    ! [A,B] :
      ( set_intersection2(singleton(A),singleton(B)) = singleton(A)
     => A = B ) ).

fof(subgoal_0,plain,
    ! [A,B] :
      ( set_intersection2(singleton(A),singleton(B)) = singleton(A)
     => A = B ),
    inference(strip,[],[t18_zfmisc_1]) ).

fof(negate_0_0,plain,
    ~ ! [A,B] :
        ( set_intersection2(singleton(A),singleton(B)) = singleton(A)
       => A = B ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ! [A,B] :
      ( B != singleton(A)
    <=> ? [C] :
          ( C != A
        <=> in(C,B) ) ),
    inference(canonicalize,[],[d1_tarski]) ).

fof(normalize_0_1,plain,
    ! [A,B] :
      ( B != singleton(A)
    <=> ? [C] :
          ( C != A
        <=> in(C,B) ) ),
    inference(specialize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ! [A,B,C] :
      ( ( B != singleton(A)
        | C != A
        | in(C,B) )
      & ( B != singleton(A)
        | ~ in(C,B)
        | C = A )
      & ( skolemFOFtoCNF_C(A,B) != A
        | ~ in(skolemFOFtoCNF_C(A,B),B)
        | B = singleton(A) )
      & ( B = singleton(A)
        | skolemFOFtoCNF_C(A,B) = A
        | in(skolemFOFtoCNF_C(A,B),B) ) ),
    inference(clausify,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ! [A,B,C] :
      ( B != singleton(A)
      | ~ in(C,B)
      | C = A ),
    inference(conjunct,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    ! [A,B] :
      ( set_intersection2(A,singleton(B)) != singleton(B)
      | in(B,A) ),
    inference(canonicalize,[],[l30_zfmisc_1]) ).

fof(normalize_0_5,plain,
    ! [A,B] :
      ( set_intersection2(A,singleton(B)) != singleton(B)
      | in(B,A) ),
    inference(specialize,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A),
    inference(canonicalize,[],[commutativity_k3_xboole_0]) ).

fof(normalize_0_7,plain,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A),
    inference(specialize,[],[normalize_0_6]) ).

fof(normalize_0_8,plain,
    ? [A,B] :
      ( A != B
      & set_intersection2(singleton(A),singleton(B)) = singleton(A) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_9,plain,
    ( skolemFOFtoCNF_A_2 != skolemFOFtoCNF_B
    & set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2) ),
    inference(skolemize,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    skolemFOFtoCNF_A_2 != skolemFOFtoCNF_B,
    inference(conjunct,[],[normalize_0_9]) ).

cnf(refute_0_0,plain,
    ( B != singleton(A)
    | ~ in(C,B)
    | C = A ),
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_1,plain,
    ( singleton(A) != singleton(A)
    | ~ in(C,singleton(A))
    | C = A ),
    inference(subst,[],[refute_0_0:[bind(B,$fot(singleton(A)))]]) ).

cnf(refute_0_2,plain,
    singleton(A) = singleton(A),
    introduced(tautology,[refl,[$fot(singleton(A))]]) ).

cnf(refute_0_3,plain,
    ( ~ in(C,singleton(A))
    | C = A ),
    inference(resolve,[$cnf( $equal(singleton(A),singleton(A)) )],[refute_0_2,refute_0_1]) ).

cnf(refute_0_4,plain,
    ( ~ in(skolemFOFtoCNF_A_2,singleton(skolemFOFtoCNF_B))
    | skolemFOFtoCNF_A_2 = skolemFOFtoCNF_B ),
    inference(subst,[],[refute_0_3:[bind(A,$fot(skolemFOFtoCNF_B)),bind(C,$fot(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_5,plain,
    ( set_intersection2(A,singleton(B)) != singleton(B)
    | in(B,A) ),
    inference(canonicalize,[],[normalize_0_5]) ).

cnf(refute_0_6,plain,
    ( set_intersection2(X_9,singleton(X_10)) != singleton(X_10)
    | in(X_10,X_9) ),
    inference(subst,[],[refute_0_5:[bind(A,$fot(X_9)),bind(B,$fot(X_10))]]) ).

cnf(refute_0_7,plain,
    set_intersection2(A,B) = set_intersection2(B,A),
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_8,plain,
    set_intersection2(singleton(X_10),X_9) = set_intersection2(X_9,singleton(X_10)),
    inference(subst,[],[refute_0_7:[bind(A,$fot(singleton(X_10))),bind(B,$fot(X_9))]]) ).

cnf(refute_0_9,plain,
    X = X,
    introduced(tautology,[refl,[$fot(X)]]) ).

cnf(refute_0_10,plain,
    ( X != X
    | X != Y
    | Y = X ),
    introduced(tautology,[equality,[$cnf( $equal(X,X) ),[0],$fot(Y)]]) ).

cnf(refute_0_11,plain,
    ( X != Y
    | Y = X ),
    inference(resolve,[$cnf( $equal(X,X) )],[refute_0_9,refute_0_10]) ).

cnf(refute_0_12,plain,
    ( set_intersection2(singleton(X_10),X_9) != set_intersection2(X_9,singleton(X_10))
    | set_intersection2(X_9,singleton(X_10)) = set_intersection2(singleton(X_10),X_9) ),
    inference(subst,[],[refute_0_11:[bind(X,$fot(set_intersection2(singleton(X_10),X_9))),bind(Y,$fot(set_intersection2(X_9,singleton(X_10))))]]) ).

cnf(refute_0_13,plain,
    set_intersection2(X_9,singleton(X_10)) = set_intersection2(singleton(X_10),X_9),
    inference(resolve,[$cnf( $equal(set_intersection2(singleton(X_10),X_9),set_intersection2(X_9,singleton(X_10))) )],[refute_0_8,refute_0_12]) ).

cnf(refute_0_14,plain,
    ( set_intersection2(X_9,singleton(X_10)) != set_intersection2(singleton(X_10),X_9)
    | set_intersection2(singleton(X_10),X_9) != singleton(X_10)
    | set_intersection2(X_9,singleton(X_10)) = singleton(X_10) ),
    introduced(tautology,[equality,[$cnf( ~ $equal(set_intersection2(X_9,singleton(X_10)),singleton(X_10)) ),[0],$fot(set_intersection2(singleton(X_10),X_9))]]) ).

cnf(refute_0_15,plain,
    ( set_intersection2(singleton(X_10),X_9) != singleton(X_10)
    | set_intersection2(X_9,singleton(X_10)) = singleton(X_10) ),
    inference(resolve,[$cnf( $equal(set_intersection2(X_9,singleton(X_10)),set_intersection2(singleton(X_10),X_9)) )],[refute_0_13,refute_0_14]) ).

cnf(refute_0_16,plain,
    ( set_intersection2(singleton(X_10),X_9) != singleton(X_10)
    | in(X_10,X_9) ),
    inference(resolve,[$cnf( $equal(set_intersection2(X_9,singleton(X_10)),singleton(X_10)) )],[refute_0_15,refute_0_6]) ).

cnf(refute_0_17,plain,
    ( set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) != singleton(skolemFOFtoCNF_A_2)
    | in(skolemFOFtoCNF_A_2,singleton(skolemFOFtoCNF_B)) ),
    inference(subst,[],[refute_0_16:[bind(X_10,$fot(skolemFOFtoCNF_A_2)),bind(X_9,$fot(singleton(skolemFOFtoCNF_B)))]]) ).

cnf(refute_0_18,plain,
    set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_19,plain,
    ( set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) != singleton(skolemFOFtoCNF_A_2)
    | singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2) ),
    introduced(tautology,[equality,[$cnf( ~ $equal(set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)),singleton(skolemFOFtoCNF_A_2)) ),[0],$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_20,plain,
    ( singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2) ),
    inference(resolve,[$cnf( $equal(set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_18,refute_0_19]) ).

cnf(refute_0_21,plain,
    ( singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | in(skolemFOFtoCNF_A_2,singleton(skolemFOFtoCNF_B)) ),
    inference(resolve,[$cnf( $equal(set_intersection2(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_B)),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_20,refute_0_17]) ).

cnf(refute_0_22,plain,
    singleton(skolemFOFtoCNF_A_2) = singleton(skolemFOFtoCNF_A_2),
    introduced(tautology,[refl,[$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_23,plain,
    in(skolemFOFtoCNF_A_2,singleton(skolemFOFtoCNF_B)),
    inference(resolve,[$cnf( $equal(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_22,refute_0_21]) ).

cnf(refute_0_24,plain,
    skolemFOFtoCNF_A_2 = skolemFOFtoCNF_B,
    inference(resolve,[$cnf( in(skolemFOFtoCNF_A_2,singleton(skolemFOFtoCNF_B)) )],[refute_0_23,refute_0_4]) ).

cnf(refute_0_25,plain,
    skolemFOFtoCNF_A_2 != skolemFOFtoCNF_B,
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_26,plain,
    $false,
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B) )],[refute_0_24,refute_0_25]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : SET877+1 : TPTP v8.1.0. Released v3.2.0.
% 0.06/0.12  % Command  : metis --show proof --show saturation %s
% 0.12/0.33  % Computer : n011.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Sun Jul 10 19:45:11 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.12/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.12/0.35  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.12/0.35  
% 0.12/0.35  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 0.12/0.35  
%------------------------------------------------------------------------------