TSTP Solution File: SET694+4 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET694+4 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:21:27 EDT 2022

% Result   : Theorem 6.79s 2.26s
% Output   : Proof 9.00s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SET694+4 : TPTP v8.1.0. Released v2.2.0.
% 0.11/0.13  % Command  : ePrincess-casc -timeout=%d %s
% 0.14/0.34  % Computer : n008.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Sun Jul 10 09:11:53 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 0.63/0.61          ____       _                          
% 0.63/0.61    ___  / __ \_____(_)___  ________  __________
% 0.63/0.61   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.63/0.61  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.63/0.61  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.63/0.61  
% 0.63/0.61  A Theorem Prover for First-Order Logic
% 0.63/0.61  (ePrincess v.1.0)
% 0.63/0.61  
% 0.63/0.61  (c) Philipp Rümmer, 2009-2015
% 0.63/0.61  (c) Peter Backeman, 2014-2015
% 0.63/0.61  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.63/0.61  Free software under GNU Lesser General Public License (LGPL).
% 0.63/0.61  Bug reports to peter@backeman.se
% 0.63/0.61  
% 0.63/0.61  For more information, visit http://user.uu.se/~petba168/breu/
% 0.63/0.61  
% 0.63/0.61  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.71/0.66  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.62/0.96  Prover 0: Preprocessing ...
% 1.99/1.16  Prover 0: Warning: ignoring some quantifiers
% 1.99/1.18  Prover 0: Constructing countermodel ...
% 5.67/2.04  Prover 0: gave up
% 5.67/2.04  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 5.67/2.07  Prover 1: Preprocessing ...
% 6.33/2.15  Prover 1: Constructing countermodel ...
% 6.79/2.25  Prover 1: proved (210ms)
% 6.79/2.26  
% 6.79/2.26  No countermodel exists, formula is valid
% 6.79/2.26  % SZS status Theorem for theBenchmark
% 6.79/2.26  
% 6.79/2.26  Generating proof ... found it (size 54)
% 8.51/2.63  
% 8.51/2.63  % SZS output start Proof for theBenchmark
% 8.51/2.63  Assumed formulas after preprocessing and simplification: 
% 8.51/2.63  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] : ( ~ (v7 = 0) & union(v2, v3) = v4 & union(v0, v1) = v5 & power_set(v5) = v6 & power_set(v1) = v3 & power_set(v0) = v2 & subset(v4, v6) = v7 &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (product(v9) = v10) |  ~ (member(v8, v11) = v12) |  ~ (member(v8, v10) = 0) |  ? [v13] : ( ~ (v13 = 0) & member(v11, v9) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (difference(v10, v9) = v11) |  ~ (member(v8, v11) = v12) |  ? [v13] :  ? [v14] : (member(v8, v10) = v13 & member(v8, v9) = v14 & ( ~ (v13 = 0) | v14 = 0))) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (union(v9, v10) = v11) |  ~ (member(v8, v11) = v12) |  ? [v13] :  ? [v14] : ( ~ (v14 = 0) &  ~ (v13 = 0) & member(v8, v10) = v14 & member(v8, v9) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (intersection(v9, v10) = v11) |  ~ (member(v8, v11) = v12) |  ? [v13] :  ? [v14] : (member(v8, v10) = v14 & member(v8, v9) = v13 & ( ~ (v14 = 0) |  ~ (v13 = 0)))) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v11 = 0 |  ~ (sum(v9) = v10) |  ~ (member(v8, v12) = 0) |  ~ (member(v8, v10) = v11) |  ? [v13] : ( ~ (v13 = 0) & member(v12, v9) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (product(v9) = v10) |  ~ (member(v8, v10) = v11) |  ? [v12] :  ? [v13] : ( ~ (v13 = 0) & member(v12, v9) = 0 & member(v8, v12) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (unordered_pair(v9, v8) = v10) |  ~ (member(v8, v10) = v11)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (unordered_pair(v8, v9) = v10) |  ~ (member(v8, v10) = v11)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (power_set(v9) = v10) |  ~ (member(v8, v10) = v11) |  ? [v12] : ( ~ (v12 = 0) & subset(v8, v9) = v12)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v10 = v8 | v9 = v8 |  ~ (unordered_pair(v9, v10) = v11) |  ~ (member(v8, v11) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (unordered_pair(v11, v10) = v9) |  ~ (unordered_pair(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (difference(v11, v10) = v9) |  ~ (difference(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (union(v11, v10) = v9) |  ~ (union(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (intersection(v11, v10) = v9) |  ~ (intersection(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (equal_set(v11, v10) = v9) |  ~ (equal_set(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (subset(v11, v10) = v9) |  ~ (subset(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (member(v11, v10) = v9) |  ~ (member(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (difference(v10, v9) = v11) |  ~ (member(v8, v11) = 0) |  ? [v12] : ( ~ (v12 = 0) & member(v8, v10) = 0 & member(v8, v9) = v12)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (union(v9, v10) = v11) |  ~ (member(v8, v11) = 0) |  ? [v12] :  ? [v13] : (member(v8, v10) = v13 & member(v8, v9) = v12 & (v13 = 0 | v12 = 0))) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (intersection(v9, v10) = v11) |  ~ (member(v8, v11) = 0) | (member(v8, v10) = 0 & member(v8, v9) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (singleton(v8) = v9) |  ~ (member(v8, v9) = v10)) &  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (equal_set(v8, v9) = v10) |  ? [v11] :  ? [v12] : (subset(v9, v8) = v12 & subset(v8, v9) = v11 & ( ~ (v12 = 0) |  ~ (v11 = 0)))) &  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (subset(v8, v9) = v10) |  ? [v11] :  ? [v12] : ( ~ (v12 = 0) & member(v11, v9) = v12 & member(v11, v8) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (product(v10) = v9) |  ~ (product(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (sum(v10) = v9) |  ~ (sum(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (singleton(v10) = v9) |  ~ (singleton(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (singleton(v9) = v10) |  ~ (member(v8, v10) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (power_set(v10) = v9) |  ~ (power_set(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (sum(v9) = v10) |  ~ (member(v8, v10) = 0) |  ? [v11] : (member(v11, v9) = 0 & member(v8, v11) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (power_set(v9) = v10) |  ~ (member(v8, v10) = 0) | subset(v8, v9) = 0) &  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (subset(v8, v9) = 0) |  ~ (member(v10, v8) = 0) | member(v10, v9) = 0) &  ! [v8] :  ! [v9] : ( ~ (equal_set(v8, v9) = 0) | (subset(v9, v8) = 0 & subset(v8, v9) = 0)) &  ! [v8] :  ~ (member(v8, empty_set) = 0))
% 8.51/2.66  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7 yields:
% 8.51/2.66  | (1)  ~ (all_0_0_0 = 0) & union(all_0_5_5, all_0_4_4) = all_0_3_3 & union(all_0_7_7, all_0_6_6) = all_0_2_2 & power_set(all_0_2_2) = all_0_1_1 & power_set(all_0_6_6) = all_0_4_4 & power_set(all_0_7_7) = all_0_5_5 & subset(all_0_3_3, all_0_1_1) = all_0_0_0 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v3) = v4) |  ~ (member(v0, v2) = 0) |  ? [v5] : ( ~ (v5 = 0) & member(v3, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v5 & member(v0, v1) = v6 & ( ~ (v5 = 0) | v6 = 0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) &  ~ (v5 = 0) & member(v0, v2) = v6 & member(v0, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v6 & member(v0, v1) = v5 & ( ~ (v6 = 0) |  ~ (v5 = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = 0 |  ~ (sum(v1) = v2) |  ~ (member(v0, v4) = 0) |  ~ (member(v0, v2) = v3) |  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = 0 & member(v0, v4) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v1, v0) = v2) |  ~ (member(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v0, v1) = v2) |  ~ (member(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ (member(v0, v3) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (equal_set(v3, v2) = v1) |  ~ (equal_set(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (member(v3, v2) = v1) |  ~ (member(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] : ( ~ (v4 = 0) & member(v0, v2) = 0 & member(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] :  ? [v5] : (member(v0, v2) = v5 & member(v0, v1) = v4 & (v5 = 0 | v4 = 0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = 0) | (member(v0, v2) = 0 & member(v0, v1) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (singleton(v0) = v1) |  ~ (member(v0, v1) = v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (equal_set(v0, v1) = v2) |  ? [v3] :  ? [v4] : (subset(v1, v0) = v4 & subset(v0, v1) = v3 & ( ~ (v4 = 0) |  ~ (v3 = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & member(v3, v1) = v4 & member(v3, v0) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ (member(v0, v2) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ (member(v0, v2) = 0) |  ? [v3] : (member(v3, v1) = 0 & member(v0, v3) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = 0) | subset(v0, v1) = 0) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (member(v2, v0) = 0) | member(v2, v1) = 0) &  ! [v0] :  ! [v1] : ( ~ (equal_set(v0, v1) = 0) | (subset(v1, v0) = 0 & subset(v0, v1) = 0)) &  ! [v0] :  ~ (member(v0, empty_set) = 0)
% 8.51/2.68  |
% 8.51/2.68  | Applying alpha-rule on (1) yields:
% 8.51/2.68  | (2) power_set(all_0_6_6) = all_0_4_4
% 8.51/2.68  | (3) union(all_0_5_5, all_0_4_4) = all_0_3_3
% 8.51/2.68  | (4)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] :  ? [v5] : (member(v0, v2) = v5 & member(v0, v1) = v4 & (v5 = 0 | v4 = 0)))
% 8.51/2.68  | (5)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 8.51/2.68  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (equal_set(v3, v2) = v1) |  ~ (equal_set(v3, v2) = v0))
% 8.51/2.68  | (7)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0))
% 8.51/2.68  | (8)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = 0 & member(v0, v4) = v5))
% 8.51/2.68  | (9)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (singleton(v0) = v1) |  ~ (member(v0, v1) = v2))
% 8.51/2.68  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) &  ~ (v5 = 0) & member(v0, v2) = v6 & member(v0, v1) = v5))
% 8.51/2.68  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v1, v0) = v2) |  ~ (member(v0, v2) = v3))
% 8.51/2.68  | (12) subset(all_0_3_3, all_0_1_1) = all_0_0_0
% 8.51/2.68  | (13)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v6 & member(v0, v1) = v5 & ( ~ (v6 = 0) |  ~ (v5 = 0))))
% 8.51/2.68  | (14) union(all_0_7_7, all_0_6_6) = all_0_2_2
% 8.51/2.68  | (15)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0))
% 8.51/2.68  | (16) power_set(all_0_7_7) = all_0_5_5
% 8.51/2.68  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v3) = v4) |  ~ (member(v0, v2) = 0) |  ? [v5] : ( ~ (v5 = 0) & member(v3, v1) = v5))
% 8.51/2.68  | (18)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (equal_set(v0, v1) = v2) |  ? [v3] :  ? [v4] : (subset(v1, v0) = v4 & subset(v0, v1) = v3 & ( ~ (v4 = 0) |  ~ (v3 = 0))))
% 8.51/2.68  | (19)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0))
% 8.51/2.68  | (20)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ (member(v0, v2) = 0))
% 8.51/2.68  | (21)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & member(v3, v1) = v4 & member(v3, v0) = 0))
% 8.51/2.68  | (22)  ~ (all_0_0_0 = 0)
% 8.51/2.68  | (23)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ (member(v0, v3) = 0))
% 8.51/2.68  | (24)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = 0) | subset(v0, v1) = 0)
% 8.51/2.69  | (25)  ! [v0] :  ! [v1] : ( ~ (equal_set(v0, v1) = 0) | (subset(v1, v0) = 0 & subset(v0, v1) = 0))
% 8.51/2.69  | (26)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = 0 |  ~ (sum(v1) = v2) |  ~ (member(v0, v4) = 0) |  ~ (member(v0, v2) = v3) |  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = v5))
% 8.51/2.69  | (27)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0))
% 8.51/2.69  | (28)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] : ( ~ (v4 = 0) & member(v0, v2) = 0 & member(v0, v1) = v4))
% 8.51/2.69  | (29)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v5 & member(v0, v1) = v6 & ( ~ (v5 = 0) | v6 = 0)))
% 8.51/2.69  | (30)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0))
% 8.51/2.69  | (31)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0))
% 8.51/2.69  | (32)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ (member(v0, v2) = 0) |  ? [v3] : (member(v3, v1) = 0 & member(v0, v3) = 0))
% 8.51/2.69  | (33)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0))
% 8.51/2.69  | (34)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = 0) | (member(v0, v2) = 0 & member(v0, v1) = 0))
% 8.51/2.69  | (35)  ! [v0] :  ~ (member(v0, empty_set) = 0)
% 8.51/2.69  | (36)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 8.51/2.69  | (37) power_set(all_0_2_2) = all_0_1_1
% 8.51/2.69  | (38)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (member(v3, v2) = v1) |  ~ (member(v3, v2) = v0))
% 8.51/2.69  | (39)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4))
% 8.96/2.69  | (40)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (member(v2, v0) = 0) | member(v2, v1) = 0)
% 8.96/2.69  | (41)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v0, v1) = v2) |  ~ (member(v0, v2) = v3))
% 8.96/2.69  |
% 8.96/2.69  | Instantiating formula (21) with all_0_0_0, all_0_1_1, all_0_3_3 and discharging atoms subset(all_0_3_3, all_0_1_1) = all_0_0_0, yields:
% 8.97/2.69  | (42) all_0_0_0 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = v1 & member(v0, all_0_3_3) = 0)
% 8.97/2.69  |
% 8.97/2.69  +-Applying beta-rule and splitting (42), into two cases.
% 8.97/2.69  |-Branch one:
% 8.97/2.69  | (43) all_0_0_0 = 0
% 8.97/2.69  |
% 8.97/2.69  	| Equations (43) can reduce 22 to:
% 8.97/2.69  	| (44) $false
% 8.97/2.69  	|
% 8.97/2.69  	|-The branch is then unsatisfiable
% 8.97/2.69  |-Branch two:
% 8.97/2.69  | (22)  ~ (all_0_0_0 = 0)
% 8.97/2.70  | (46)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = v1 & member(v0, all_0_3_3) = 0)
% 8.97/2.70  |
% 8.97/2.70  	| Instantiating (46) with all_14_0_8, all_14_1_9 yields:
% 8.97/2.70  	| (47)  ~ (all_14_0_8 = 0) & member(all_14_1_9, all_0_1_1) = all_14_0_8 & member(all_14_1_9, all_0_3_3) = 0
% 8.97/2.70  	|
% 8.97/2.70  	| Applying alpha-rule on (47) yields:
% 8.97/2.70  	| (48)  ~ (all_14_0_8 = 0)
% 8.97/2.70  	| (49) member(all_14_1_9, all_0_1_1) = all_14_0_8
% 8.97/2.70  	| (50) member(all_14_1_9, all_0_3_3) = 0
% 8.97/2.70  	|
% 8.97/2.70  	| Instantiating formula (39) with all_14_0_8, all_0_1_1, all_0_2_2, all_14_1_9 and discharging atoms power_set(all_0_2_2) = all_0_1_1, member(all_14_1_9, all_0_1_1) = all_14_0_8, yields:
% 8.97/2.70  	| (51) all_14_0_8 = 0 |  ? [v0] : ( ~ (v0 = 0) & subset(all_14_1_9, all_0_2_2) = v0)
% 8.97/2.70  	|
% 8.97/2.70  	| Instantiating formula (4) with all_0_3_3, all_0_4_4, all_0_5_5, all_14_1_9 and discharging atoms union(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_14_1_9, all_0_3_3) = 0, yields:
% 8.97/2.70  	| (52)  ? [v0] :  ? [v1] : (member(all_14_1_9, all_0_4_4) = v1 & member(all_14_1_9, all_0_5_5) = v0 & (v1 = 0 | v0 = 0))
% 8.97/2.70  	|
% 8.97/2.70  	| Instantiating formula (24) with all_0_4_4, all_0_6_6, all_14_1_9 and discharging atoms power_set(all_0_6_6) = all_0_4_4, yields:
% 8.97/2.70  	| (53)  ~ (member(all_14_1_9, all_0_4_4) = 0) | subset(all_14_1_9, all_0_6_6) = 0
% 8.97/2.70  	|
% 8.97/2.70  	| Instantiating formula (24) with all_0_5_5, all_0_7_7, all_14_1_9 and discharging atoms power_set(all_0_7_7) = all_0_5_5, yields:
% 8.97/2.70  	| (54)  ~ (member(all_14_1_9, all_0_5_5) = 0) | subset(all_14_1_9, all_0_7_7) = 0
% 8.97/2.70  	|
% 8.97/2.70  	| Instantiating (52) with all_29_0_10, all_29_1_11 yields:
% 8.97/2.70  	| (55) member(all_14_1_9, all_0_4_4) = all_29_0_10 & member(all_14_1_9, all_0_5_5) = all_29_1_11 & (all_29_0_10 = 0 | all_29_1_11 = 0)
% 9.00/2.70  	|
% 9.00/2.70  	| Applying alpha-rule on (55) yields:
% 9.00/2.70  	| (56) member(all_14_1_9, all_0_4_4) = all_29_0_10
% 9.00/2.70  	| (57) member(all_14_1_9, all_0_5_5) = all_29_1_11
% 9.00/2.70  	| (58) all_29_0_10 = 0 | all_29_1_11 = 0
% 9.00/2.70  	|
% 9.00/2.70  	+-Applying beta-rule and splitting (51), into two cases.
% 9.00/2.70  	|-Branch one:
% 9.00/2.70  	| (59) all_14_0_8 = 0
% 9.00/2.70  	|
% 9.00/2.70  		| Equations (59) can reduce 48 to:
% 9.00/2.70  		| (44) $false
% 9.00/2.70  		|
% 9.00/2.70  		|-The branch is then unsatisfiable
% 9.00/2.70  	|-Branch two:
% 9.00/2.70  	| (48)  ~ (all_14_0_8 = 0)
% 9.00/2.70  	| (62)  ? [v0] : ( ~ (v0 = 0) & subset(all_14_1_9, all_0_2_2) = v0)
% 9.00/2.70  	|
% 9.00/2.70  		| Instantiating (62) with all_35_0_12 yields:
% 9.00/2.70  		| (63)  ~ (all_35_0_12 = 0) & subset(all_14_1_9, all_0_2_2) = all_35_0_12
% 9.00/2.70  		|
% 9.00/2.70  		| Applying alpha-rule on (63) yields:
% 9.00/2.70  		| (64)  ~ (all_35_0_12 = 0)
% 9.00/2.70  		| (65) subset(all_14_1_9, all_0_2_2) = all_35_0_12
% 9.00/2.70  		|
% 9.00/2.70  		| Instantiating formula (21) with all_35_0_12, all_0_2_2, all_14_1_9 and discharging atoms subset(all_14_1_9, all_0_2_2) = all_35_0_12, yields:
% 9.00/2.70  		| (66) all_35_0_12 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_14_1_9) = 0 & member(v0, all_0_2_2) = v1)
% 9.00/2.70  		|
% 9.00/2.70  		+-Applying beta-rule and splitting (66), into two cases.
% 9.00/2.70  		|-Branch one:
% 9.00/2.70  		| (67) all_35_0_12 = 0
% 9.00/2.70  		|
% 9.00/2.70  			| Equations (67) can reduce 64 to:
% 9.00/2.70  			| (44) $false
% 9.00/2.70  			|
% 9.00/2.70  			|-The branch is then unsatisfiable
% 9.00/2.70  		|-Branch two:
% 9.00/2.70  		| (64)  ~ (all_35_0_12 = 0)
% 9.00/2.70  		| (70)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_14_1_9) = 0 & member(v0, all_0_2_2) = v1)
% 9.00/2.71  		|
% 9.00/2.71  			| Instantiating (70) with all_56_0_13, all_56_1_14 yields:
% 9.00/2.71  			| (71)  ~ (all_56_0_13 = 0) & member(all_56_1_14, all_14_1_9) = 0 & member(all_56_1_14, all_0_2_2) = all_56_0_13
% 9.00/2.71  			|
% 9.00/2.71  			| Applying alpha-rule on (71) yields:
% 9.00/2.71  			| (72)  ~ (all_56_0_13 = 0)
% 9.00/2.71  			| (73) member(all_56_1_14, all_14_1_9) = 0
% 9.00/2.71  			| (74) member(all_56_1_14, all_0_2_2) = all_56_0_13
% 9.00/2.71  			|
% 9.00/2.71  			| Instantiating formula (10) with all_56_0_13, all_0_2_2, all_0_6_6, all_0_7_7, all_56_1_14 and discharging atoms union(all_0_7_7, all_0_6_6) = all_0_2_2, member(all_56_1_14, all_0_2_2) = all_56_0_13, yields:
% 9.00/2.71  			| (75) all_56_0_13 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) &  ~ (v0 = 0) & member(all_56_1_14, all_0_6_6) = v1 & member(all_56_1_14, all_0_7_7) = v0)
% 9.00/2.71  			|
% 9.00/2.71  			+-Applying beta-rule and splitting (75), into two cases.
% 9.00/2.71  			|-Branch one:
% 9.00/2.71  			| (76) all_56_0_13 = 0
% 9.00/2.71  			|
% 9.00/2.71  				| Equations (76) can reduce 72 to:
% 9.00/2.71  				| (44) $false
% 9.00/2.71  				|
% 9.00/2.71  				|-The branch is then unsatisfiable
% 9.00/2.71  			|-Branch two:
% 9.00/2.71  			| (72)  ~ (all_56_0_13 = 0)
% 9.00/2.71  			| (79)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) &  ~ (v0 = 0) & member(all_56_1_14, all_0_6_6) = v1 & member(all_56_1_14, all_0_7_7) = v0)
% 9.00/2.71  			|
% 9.00/2.71  				| Instantiating (79) with all_77_0_15, all_77_1_16 yields:
% 9.00/2.71  				| (80)  ~ (all_77_0_15 = 0) &  ~ (all_77_1_16 = 0) & member(all_56_1_14, all_0_6_6) = all_77_0_15 & member(all_56_1_14, all_0_7_7) = all_77_1_16
% 9.00/2.71  				|
% 9.00/2.71  				| Applying alpha-rule on (80) yields:
% 9.00/2.71  				| (81)  ~ (all_77_0_15 = 0)
% 9.00/2.71  				| (82)  ~ (all_77_1_16 = 0)
% 9.00/2.71  				| (83) member(all_56_1_14, all_0_6_6) = all_77_0_15
% 9.00/2.71  				| (84) member(all_56_1_14, all_0_7_7) = all_77_1_16
% 9.00/2.71  				|
% 9.00/2.71  				| Instantiating formula (38) with all_56_1_14, all_0_6_6, all_77_0_15, 0 and discharging atoms member(all_56_1_14, all_0_6_6) = all_77_0_15, yields:
% 9.00/2.71  				| (85) all_77_0_15 = 0 |  ~ (member(all_56_1_14, all_0_6_6) = 0)
% 9.00/2.71  				|
% 9.00/2.71  				| Instantiating formula (38) with all_56_1_14, all_0_7_7, all_77_1_16, 0 and discharging atoms member(all_56_1_14, all_0_7_7) = all_77_1_16, yields:
% 9.00/2.71  				| (86) all_77_1_16 = 0 |  ~ (member(all_56_1_14, all_0_7_7) = 0)
% 9.00/2.71  				|
% 9.00/2.71  				+-Applying beta-rule and splitting (54), into two cases.
% 9.00/2.71  				|-Branch one:
% 9.00/2.71  				| (87)  ~ (member(all_14_1_9, all_0_5_5) = 0)
% 9.00/2.71  				|
% 9.00/2.71  					| Using (57) and (87) yields:
% 9.00/2.71  					| (88)  ~ (all_29_1_11 = 0)
% 9.00/2.71  					|
% 9.00/2.71  					+-Applying beta-rule and splitting (58), into two cases.
% 9.00/2.71  					|-Branch one:
% 9.00/2.71  					| (89) all_29_0_10 = 0
% 9.00/2.71  					|
% 9.00/2.71  						| From (89) and (56) follows:
% 9.00/2.71  						| (90) member(all_14_1_9, all_0_4_4) = 0
% 9.00/2.71  						|
% 9.00/2.71  						+-Applying beta-rule and splitting (53), into two cases.
% 9.00/2.71  						|-Branch one:
% 9.00/2.71  						| (91)  ~ (member(all_14_1_9, all_0_4_4) = 0)
% 9.00/2.71  						|
% 9.00/2.71  							| Using (90) and (91) yields:
% 9.00/2.71  							| (92) $false
% 9.00/2.71  							|
% 9.00/2.71  							|-The branch is then unsatisfiable
% 9.00/2.71  						|-Branch two:
% 9.00/2.71  						| (90) member(all_14_1_9, all_0_4_4) = 0
% 9.00/2.71  						| (94) subset(all_14_1_9, all_0_6_6) = 0
% 9.00/2.71  						|
% 9.00/2.71  							| Instantiating formula (40) with all_56_1_14, all_0_6_6, all_14_1_9 and discharging atoms subset(all_14_1_9, all_0_6_6) = 0, member(all_56_1_14, all_14_1_9) = 0, yields:
% 9.00/2.71  							| (95) member(all_56_1_14, all_0_6_6) = 0
% 9.00/2.71  							|
% 9.00/2.71  							+-Applying beta-rule and splitting (85), into two cases.
% 9.00/2.71  							|-Branch one:
% 9.00/2.71  							| (96)  ~ (member(all_56_1_14, all_0_6_6) = 0)
% 9.00/2.71  							|
% 9.00/2.71  								| Using (95) and (96) yields:
% 9.00/2.71  								| (92) $false
% 9.00/2.71  								|
% 9.00/2.71  								|-The branch is then unsatisfiable
% 9.00/2.71  							|-Branch two:
% 9.00/2.71  							| (95) member(all_56_1_14, all_0_6_6) = 0
% 9.00/2.71  							| (99) all_77_0_15 = 0
% 9.00/2.71  							|
% 9.00/2.71  								| Equations (99) can reduce 81 to:
% 9.00/2.71  								| (44) $false
% 9.00/2.71  								|
% 9.00/2.71  								|-The branch is then unsatisfiable
% 9.00/2.71  					|-Branch two:
% 9.00/2.71  					| (101)  ~ (all_29_0_10 = 0)
% 9.00/2.71  					| (102) all_29_1_11 = 0
% 9.00/2.71  					|
% 9.00/2.71  						| Equations (102) can reduce 88 to:
% 9.00/2.71  						| (44) $false
% 9.00/2.71  						|
% 9.00/2.71  						|-The branch is then unsatisfiable
% 9.00/2.71  				|-Branch two:
% 9.00/2.71  				| (104) member(all_14_1_9, all_0_5_5) = 0
% 9.00/2.71  				| (105) subset(all_14_1_9, all_0_7_7) = 0
% 9.00/2.71  				|
% 9.00/2.71  					| Instantiating formula (40) with all_56_1_14, all_0_7_7, all_14_1_9 and discharging atoms subset(all_14_1_9, all_0_7_7) = 0, member(all_56_1_14, all_14_1_9) = 0, yields:
% 9.00/2.71  					| (106) member(all_56_1_14, all_0_7_7) = 0
% 9.00/2.71  					|
% 9.00/2.71  					+-Applying beta-rule and splitting (86), into two cases.
% 9.00/2.71  					|-Branch one:
% 9.00/2.71  					| (107)  ~ (member(all_56_1_14, all_0_7_7) = 0)
% 9.00/2.71  					|
% 9.00/2.71  						| Using (106) and (107) yields:
% 9.00/2.71  						| (92) $false
% 9.00/2.71  						|
% 9.00/2.71  						|-The branch is then unsatisfiable
% 9.00/2.71  					|-Branch two:
% 9.00/2.71  					| (106) member(all_56_1_14, all_0_7_7) = 0
% 9.00/2.71  					| (110) all_77_1_16 = 0
% 9.00/2.71  					|
% 9.00/2.71  						| Equations (110) can reduce 82 to:
% 9.00/2.71  						| (44) $false
% 9.00/2.71  						|
% 9.00/2.71  						|-The branch is then unsatisfiable
% 9.00/2.71  % SZS output end Proof for theBenchmark
% 9.00/2.72  
% 9.00/2.72  2097ms
%------------------------------------------------------------------------------