TSTP Solution File: SET679+3 by Prover9---1109a

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Prover9---1109a
% Problem  : SET679+3 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_prover9 %d %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 04:31:21 EDT 2022

% Result   : Theorem 0.74s 1.04s
% Output   : Refutation 0.74s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : SET679+3 : TPTP v8.1.0. Released v2.2.0.
% 0.12/0.13  % Command  : tptp2X_and_run_prover9 %d %s
% 0.13/0.35  % Computer : n003.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 600
% 0.13/0.35  % DateTime : Sun Jul 10 16:11:59 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.74/1.03  ============================== Prover9 ===============================
% 0.74/1.03  Prover9 (32) version 2009-11A, November 2009.
% 0.74/1.03  Process 28188 was started by sandbox2 on n003.cluster.edu,
% 0.74/1.03  Sun Jul 10 16:12:00 2022
% 0.74/1.03  The command was "/export/starexec/sandbox2/solver/bin/prover9 -t 300 -f /tmp/Prover9_28035_n003.cluster.edu".
% 0.74/1.03  ============================== end of head ===========================
% 0.74/1.03  
% 0.74/1.03  ============================== INPUT =================================
% 0.74/1.03  
% 0.74/1.03  % Reading from file /tmp/Prover9_28035_n003.cluster.edu
% 0.74/1.03  
% 0.74/1.03  set(prolog_style_variables).
% 0.74/1.03  set(auto2).
% 0.74/1.03      % set(auto2) -> set(auto).
% 0.74/1.03      % set(auto) -> set(auto_inference).
% 0.74/1.03      % set(auto) -> set(auto_setup).
% 0.74/1.03      % set(auto_setup) -> set(predicate_elim).
% 0.74/1.03      % set(auto_setup) -> assign(eq_defs, unfold).
% 0.74/1.03      % set(auto) -> set(auto_limits).
% 0.74/1.03      % set(auto_limits) -> assign(max_weight, "100.000").
% 0.74/1.03      % set(auto_limits) -> assign(sos_limit, 20000).
% 0.74/1.03      % set(auto) -> set(auto_denials).
% 0.74/1.03      % set(auto) -> set(auto_process).
% 0.74/1.03      % set(auto2) -> assign(new_constants, 1).
% 0.74/1.03      % set(auto2) -> assign(fold_denial_max, 3).
% 0.74/1.03      % set(auto2) -> assign(max_weight, "200.000").
% 0.74/1.03      % set(auto2) -> assign(max_hours, 1).
% 0.74/1.03      % assign(max_hours, 1) -> assign(max_seconds, 3600).
% 0.74/1.03      % set(auto2) -> assign(max_seconds, 0).
% 0.74/1.03      % set(auto2) -> assign(max_minutes, 5).
% 0.74/1.03      % assign(max_minutes, 5) -> assign(max_seconds, 300).
% 0.74/1.03      % set(auto2) -> set(sort_initial_sos).
% 0.74/1.03      % set(auto2) -> assign(sos_limit, -1).
% 0.74/1.03      % set(auto2) -> assign(lrs_ticks, 3000).
% 0.74/1.03      % set(auto2) -> assign(max_megs, 400).
% 0.74/1.03      % set(auto2) -> assign(stats, some).
% 0.74/1.03      % set(auto2) -> clear(echo_input).
% 0.74/1.03      % set(auto2) -> set(quiet).
% 0.74/1.03      % set(auto2) -> clear(print_initial_clauses).
% 0.74/1.03      % set(auto2) -> clear(print_given).
% 0.74/1.03  assign(lrs_ticks,-1).
% 0.74/1.03  assign(sos_limit,10000).
% 0.74/1.03  assign(order,kbo).
% 0.74/1.03  set(lex_order_vars).
% 0.74/1.03  clear(print_given).
% 0.74/1.03  
% 0.74/1.03  % formulas(sos).  % not echoed (24 formulas)
% 0.74/1.03  
% 0.74/1.03  ============================== end of input ==========================
% 0.74/1.03  
% 0.74/1.03  % From the command line: assign(max_seconds, 300).
% 0.74/1.03  
% 0.74/1.03  ============================== PROCESS NON-CLAUSAL FORMULAS ==========
% 0.74/1.03  
% 0.74/1.03  % Formulas that are not ordinary clauses:
% 0.74/1.03  1 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (member(C,B) <-> member(ordered_pair(C,C),identity_relation_of(B))))))) # label(p1) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  2 (all B (ilf_type(B,set_type) -> -member(B,empty_set))) # label(p2) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  3 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (all D (ilf_type(D,set_type) -> (member(ordered_pair(C,D),identity_relation_of(B)) <-> member(C,B) & C = D))))))) # label(p4) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  4 (all B (ilf_type(B,set_type) -> ilf_type(identity_relation_of(B),binary_relation_type))) # label(p5) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  5 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (B = C <-> (all D (ilf_type(D,set_type) -> (member(D,B) <-> member(D,C))))))))) # label(p6) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  6 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (not_equal(B,C) <-> B != C))))) # label(p7) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  7 (all B (ilf_type(B,set_type) -> (empty(B) <-> (all C (ilf_type(C,set_type) -> -member(C,B)))))) # label(p8) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  8 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> ilf_type(ordered_pair(B,C),set_type))))) # label(p9) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  9 (all B (ilf_type(B,set_type) -> (ilf_type(B,binary_relation_type) <-> relation_like(B) & ilf_type(B,set_type)))) # label(p10) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  10 (exists B ilf_type(B,binary_relation_type)) # label(p11) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  11 (all B (ilf_type(B,set_type) -> (relation_like(B) <-> (all C (ilf_type(C,set_type) -> (member(C,B) -> (exists D (ilf_type(D,set_type) & (exists E (ilf_type(E,set_type) & C = ordered_pair(D,E))))))))))) # label(p12) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  12 (all B (empty(B) & ilf_type(B,set_type) -> relation_like(B))) # label(p13) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  13 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (all D (ilf_type(D,subset_type(cross_product(B,C))) -> relation_like(D))))))) # label(p14) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  14 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> ilf_type(cross_product(B,C),set_type))))) # label(p15) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  15 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (ilf_type(C,subset_type(B)) <-> ilf_type(C,member_type(power_set(B)))))))) # label(p16) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  16 (all B (ilf_type(B,set_type) -> (exists C ilf_type(C,subset_type(B))))) # label(p17) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  17 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (member(B,power_set(C)) <-> (all D (ilf_type(D,set_type) -> (member(D,B) -> member(D,C))))))))) # label(p18) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  18 (all B (ilf_type(B,set_type) -> -empty(power_set(B)) & ilf_type(power_set(B),set_type))) # label(p19) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  19 (all B (ilf_type(B,set_type) -> (all C (-empty(C) & ilf_type(C,set_type) -> (ilf_type(B,member_type(C)) <-> member(B,C)))))) # label(p20) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  20 (all B (-empty(B) & ilf_type(B,set_type) -> (exists C ilf_type(C,member_type(B))))) # label(p21) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  21 (all B ilf_type(B,set_type)) # label(p22) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.03  22 -(all B (-empty(B) & ilf_type(B,set_type) -> not_equal(identity_relation_of(B),empty_set))) # label(prove_relset_1_46) # label(negated_conjecture) # label(non_clause).  [assumption].
% 0.74/1.03  
% 0.74/1.03  ============================== end of process non-clausal formulas ===
% 0.74/1.03  
% 0.74/1.03  ============================== PROCESS INITIAL CLAUSES ===============
% 0.74/1.03  
% 0.74/1.03  ============================== PREDICATE ELIMINATION =================
% 0.74/1.03  23 -ilf_type(A,set_type) | ilf_type(A,binary_relation_type) | -relation_like(A) # label(p10) # label(axiom).  [clausify(9)].
% 0.74/1.03  24 -empty(A) | -ilf_type(A,set_type) | relation_like(A) # label(p13) # label(axiom).  [clausify(12)].
% 0.74/1.03  25 -ilf_type(A,set_type) | -ilf_type(A,binary_relation_type) | relation_like(A) # label(p10) # label(axiom).  [clausify(9)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | ilf_type(A,binary_relation_type) | -empty(A) | -ilf_type(A,set_type).  [resolve(23,c,24,c)].
% 0.74/1.03  26 -ilf_type(A,set_type) | relation_like(A) | ilf_type(f5(A),set_type) # label(p12) # label(axiom).  [clausify(11)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | ilf_type(f5(A),set_type) | -ilf_type(A,set_type) | ilf_type(A,binary_relation_type).  [resolve(26,b,23,c)].
% 0.74/1.03  27 -ilf_type(A,set_type) | relation_like(A) | member(f5(A),A) # label(p12) # label(axiom).  [clausify(11)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | member(f5(A),A) | -ilf_type(A,set_type) | ilf_type(A,binary_relation_type).  [resolve(27,b,23,c)].
% 0.74/1.03  28 -ilf_type(A,set_type) | -ilf_type(B,set_type) | -ilf_type(C,subset_type(cross_product(A,B))) | relation_like(C) # label(p14) # label(axiom).  [clausify(13)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -ilf_type(C,subset_type(cross_product(A,B))) | -ilf_type(C,set_type) | ilf_type(C,binary_relation_type).  [resolve(28,d,23,c)].
% 0.74/1.03  29 -ilf_type(A,set_type) | -relation_like(A) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f3(A,B),set_type) # label(p12) # label(axiom).  [clausify(11)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f3(A,B),set_type) | -empty(A) | -ilf_type(A,set_type).  [resolve(29,b,24,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f3(A,B),set_type) | -ilf_type(A,set_type) | -ilf_type(A,binary_relation_type).  [resolve(29,b,25,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f3(A,B),set_type) | -ilf_type(A,set_type) | ilf_type(f5(A),set_type).  [resolve(29,b,26,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f3(A,B),set_type) | -ilf_type(A,set_type) | member(f5(A),A).  [resolve(29,b,27,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f3(A,B),set_type) | -ilf_type(C,set_type) | -ilf_type(D,set_type) | -ilf_type(A,subset_type(cross_product(C,D))).  [resolve(29,b,28,d)].
% 0.74/1.03  30 -ilf_type(A,set_type) | -relation_like(A) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f4(A,B),set_type) # label(p12) # label(axiom).  [clausify(11)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f4(A,B),set_type) | -empty(A) | -ilf_type(A,set_type).  [resolve(30,b,24,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f4(A,B),set_type) | -ilf_type(A,set_type) | -ilf_type(A,binary_relation_type).  [resolve(30,b,25,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f4(A,B),set_type) | -ilf_type(A,set_type) | ilf_type(f5(A),set_type).  [resolve(30,b,26,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f4(A,B),set_type) | -ilf_type(A,set_type) | member(f5(A),A).  [resolve(30,b,27,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ilf_type(f4(A,B),set_type) | -ilf_type(C,set_type) | -ilf_type(D,set_type) | -ilf_type(A,subset_type(cross_product(C,D))).  [resolve(30,b,28,d)].
% 0.74/1.03  31 -ilf_type(A,set_type) | relation_like(A) | -ilf_type(B,set_type) | -ilf_type(C,set_type) | ordered_pair(B,C) != f5(A) # label(p12) # label(axiom).  [clausify(11)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -ilf_type(C,set_type) | ordered_pair(B,C) != f5(A) | -ilf_type(A,set_type) | ilf_type(A,binary_relation_type).  [resolve(31,b,23,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -ilf_type(C,set_type) | ordered_pair(B,C) != f5(A) | -ilf_type(A,set_type) | -ilf_type(D,set_type) | -member(D,A) | ilf_type(f3(A,D),set_type).  [resolve(31,b,29,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -ilf_type(C,set_type) | ordered_pair(B,C) != f5(A) | -ilf_type(A,set_type) | -ilf_type(D,set_type) | -member(D,A) | ilf_type(f4(A,D),set_type).  [resolve(31,b,30,b)].
% 0.74/1.03  32 -ilf_type(A,set_type) | -relation_like(A) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B # label(p12) # label(axiom).  [clausify(11)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B | -empty(A) | -ilf_type(A,set_type).  [resolve(32,b,24,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B | -ilf_type(A,set_type) | -ilf_type(A,binary_relation_type).  [resolve(32,b,25,c)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B | -ilf_type(A,set_type) | ilf_type(f5(A),set_type).  [resolve(32,b,26,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B | -ilf_type(A,set_type) | member(f5(A),A).  [resolve(32,b,27,b)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B | -ilf_type(C,set_type) | -ilf_type(D,set_type) | -ilf_type(A,subset_type(cross_product(C,D))).  [resolve(32,b,28,d)].
% 0.74/1.03  Derived: -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | ordered_pair(f3(A,B),f4(A,B)) = B | -ilf_type(A,set_type) | -ilf_type(C,set_type) | -ilf_type(D,set_type) | ordered_pair(C,D) != f5(A).  [resolve(32,b,31,b)].
% 0.74/1.03  
% 0.74/1.03  ============================== end predicate elimination =============
% 0.74/1.03  
% 0.74/1.03  Auto_denials:  (non-Horn, no changes).
% 0.74/1.03  
% 0.74/1.03  Term ordering decisions:
% 0.74/1.03  Function symbol KB weights:  set_type=1. binary_relation_type=1. empty_set=1. c1=1. c2=1. ordered_pair=1. cross_product=1. f1=1. f3=1. f4=1. f7=1. power_set=1. subset_type=1. identity_relation_of=1. member_type=1. f2=1. f5=1. f6=1. f8=1.
% 0.74/1.03  
% 0.74/1.03  ============================== end of process initial clauses ========
% 0.74/1.03  
% 0.74/1.03  ============================== CLAUSES FOR SEARCH ====================
% 0.74/1.04  
% 0.74/1.04  ============================== end of clauses for search =============
% 0.74/1.04  
% 0.74/1.04  ============================== SEARCH ================================
% 0.74/1.04  
% 0.74/1.04  % Starting search at 0.02 seconds.
% 0.74/1.04  
% 0.74/1.04  ============================== PROOF =================================
% 0.74/1.04  % SZS status Theorem
% 0.74/1.04  % SZS output start Refutation
% 0.74/1.04  
% 0.74/1.04  % Proof 1 at 0.03 (+ 0.00) seconds.
% 0.74/1.04  % Length of proof is 20.
% 0.74/1.04  % Level of proof is 4.
% 0.74/1.04  % Maximum clause weight is 10.000.
% 0.74/1.04  % Given clauses 48.
% 0.74/1.04  
% 0.74/1.04  1 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (member(C,B) <-> member(ordered_pair(C,C),identity_relation_of(B))))))) # label(p1) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.04  2 (all B (ilf_type(B,set_type) -> -member(B,empty_set))) # label(p2) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.04  6 (all B (ilf_type(B,set_type) -> (all C (ilf_type(C,set_type) -> (not_equal(B,C) <-> B != C))))) # label(p7) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.04  7 (all B (ilf_type(B,set_type) -> (empty(B) <-> (all C (ilf_type(C,set_type) -> -member(C,B)))))) # label(p8) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.04  21 (all B ilf_type(B,set_type)) # label(p22) # label(axiom) # label(non_clause).  [assumption].
% 0.74/1.04  22 -(all B (-empty(B) & ilf_type(B,set_type) -> not_equal(identity_relation_of(B),empty_set))) # label(prove_relset_1_46) # label(negated_conjecture) # label(non_clause).  [assumption].
% 0.74/1.04  35 ilf_type(A,set_type) # label(p22) # label(axiom).  [clausify(21)].
% 0.74/1.04  36 -empty(c2) # label(prove_relset_1_46) # label(negated_conjecture).  [clausify(22)].
% 0.74/1.04  37 -not_equal(identity_relation_of(c2),empty_set) # label(prove_relset_1_46) # label(negated_conjecture).  [clausify(22)].
% 0.74/1.04  38 -ilf_type(A,set_type) | -member(A,empty_set) # label(p2) # label(axiom).  [clausify(2)].
% 0.74/1.04  39 -member(A,empty_set).  [copy(38),unit_del(a,35)].
% 0.74/1.04  52 -ilf_type(A,set_type) | empty(A) | member(f2(A),A) # label(p8) # label(axiom).  [clausify(7)].
% 0.74/1.04  53 empty(A) | member(f2(A),A).  [copy(52),unit_del(a,35)].
% 0.74/1.04  58 -ilf_type(A,set_type) | -ilf_type(B,set_type) | not_equal(A,B) | B = A # label(p7) # label(axiom).  [clausify(6)].
% 0.74/1.04  59 not_equal(A,B) | B = A.  [copy(58),unit_del(a,35),unit_del(b,35)].
% 0.74/1.04  61 -ilf_type(A,set_type) | -ilf_type(B,set_type) | -member(B,A) | member(ordered_pair(B,B),identity_relation_of(A)) # label(p1) # label(axiom).  [clausify(1)].
% 0.74/1.04  62 -member(A,B) | member(ordered_pair(A,A),identity_relation_of(B)).  [copy(61),unit_del(a,35),unit_del(b,35)].
% 0.74/1.04  127 identity_relation_of(c2) = empty_set.  [resolve(59,a,37,a),flip(a)].
% 0.74/1.04  128 member(ordered_pair(f2(A),f2(A)),identity_relation_of(A)) | empty(A).  [resolve(62,a,53,b)].
% 0.74/1.04  236 $F.  [para(127(a,1),128(a,2)),unit_del(a,39),unit_del(b,36)].
% 0.74/1.04  
% 0.74/1.04  % SZS output end Refutation
% 0.74/1.04  ============================== end of proof ==========================
% 0.74/1.04  
% 0.74/1.04  ============================== STATISTICS ============================
% 0.74/1.04  
% 0.74/1.04  Given=48. Generated=235. Kept=149. proofs=1.
% 0.74/1.04  Usable=46. Sos=90. Demods=1. Limbo=10, Disabled=74. Hints=0.
% 0.74/1.04  Megabytes=0.26.
% 0.74/1.04  User_CPU=0.03, System_CPU=0.00, Wall_clock=0.
% 0.74/1.04  
% 0.74/1.04  ============================== end of statistics =====================
% 0.74/1.04  
% 0.74/1.04  ============================== end of search =========================
% 0.74/1.04  
% 0.74/1.04  THEOREM PROVED
% 0.74/1.04  % SZS status Theorem
% 0.74/1.04  
% 0.74/1.04  Exiting with 1 proof.
% 0.74/1.04  
% 0.74/1.04  Process 28188 exit (max_proofs) Sun Jul 10 16:12:00 2022
% 0.74/1.04  Prover9 interrupted
%------------------------------------------------------------------------------