TSTP Solution File: SET638+3 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SET638+3 : TPTP v8.1.2. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 15:32:49 EDT 2023

% Result   : Theorem 0.19s 0.41s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SET638+3 : TPTP v8.1.2. Released v2.2.0.
% 0.07/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n009.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Sat Aug 26 14:24:05 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 0.19/0.41  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.19/0.41  
% 0.19/0.41  % SZS status Theorem
% 0.19/0.41  
% 0.19/0.41  % SZS output start Proof
% 0.19/0.41  Take the following subset of the input axioms:
% 0.19/0.41    fof(commutativity_of_intersection, axiom, ![B, C]: intersection(B, C)=intersection(C, B)).
% 0.19/0.41    fof(intersection_distributes_over_union, axiom, ![D, B2, C2]: intersection(B2, union(C2, D))=union(intersection(B2, C2), intersection(B2, D))).
% 0.19/0.41    fof(intersection_is_subset, axiom, ![B2, C2]: subset(intersection(B2, C2), B2)).
% 0.19/0.41    fof(prove_th120, conjecture, ![B2, C2, D2]: ((subset(B2, union(C2, D2)) & intersection(B2, D2)=empty_set) => subset(B2, C2))).
% 0.19/0.41    fof(subset_intersection, axiom, ![B2, C2]: (subset(B2, C2) => intersection(B2, C2)=B2)).
% 0.19/0.41    fof(union_empty_set, axiom, ![B2]: union(B2, empty_set)=B2).
% 0.19/0.41  
% 0.19/0.41  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.41  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.41  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.41    fresh(y, y, x1...xn) = u
% 0.19/0.41    C => fresh(s, t, x1...xn) = v
% 0.19/0.41  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.41  variables of u and v.
% 0.19/0.41  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.41  input problem has no model of domain size 1).
% 0.19/0.41  
% 0.19/0.41  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.41  
% 0.19/0.41  Axiom 1 (commutativity_of_intersection): intersection(X, Y) = intersection(Y, X).
% 0.19/0.41  Axiom 2 (prove_th120): intersection(b, d) = empty_set.
% 0.19/0.41  Axiom 3 (union_empty_set): union(X, empty_set) = X.
% 0.19/0.41  Axiom 4 (prove_th120_1): subset(b, union(c, d)) = true2.
% 0.19/0.41  Axiom 5 (intersection_is_subset): subset(intersection(X, Y), X) = true2.
% 0.19/0.41  Axiom 6 (subset_intersection): fresh5(X, X, Y, Z) = Y.
% 0.19/0.41  Axiom 7 (intersection_distributes_over_union): intersection(X, union(Y, Z)) = union(intersection(X, Y), intersection(X, Z)).
% 0.19/0.41  Axiom 8 (subset_intersection): fresh5(subset(X, Y), true2, X, Y) = intersection(X, Y).
% 0.19/0.41  
% 0.19/0.41  Goal 1 (prove_th120_2): subset(b, c) = true2.
% 0.19/0.41  Proof:
% 0.19/0.41    subset(b, c)
% 0.19/0.41  = { by axiom 6 (subset_intersection) R->L }
% 0.19/0.41    subset(fresh5(true2, true2, b, union(c, d)), c)
% 0.19/0.41  = { by axiom 4 (prove_th120_1) R->L }
% 0.19/0.41    subset(fresh5(subset(b, union(c, d)), true2, b, union(c, d)), c)
% 0.19/0.41  = { by axiom 8 (subset_intersection) }
% 0.19/0.41    subset(intersection(b, union(c, d)), c)
% 0.19/0.41  = { by axiom 7 (intersection_distributes_over_union) }
% 0.19/0.41    subset(union(intersection(b, c), intersection(b, d)), c)
% 0.19/0.41  = { by axiom 2 (prove_th120) }
% 0.19/0.41    subset(union(intersection(b, c), empty_set), c)
% 0.19/0.41  = { by axiom 3 (union_empty_set) }
% 0.19/0.41    subset(intersection(b, c), c)
% 0.19/0.41  = { by axiom 1 (commutativity_of_intersection) R->L }
% 0.19/0.41    subset(intersection(c, b), c)
% 0.19/0.41  = { by axiom 5 (intersection_is_subset) }
% 0.19/0.41    true2
% 0.19/0.41  % SZS output end Proof
% 0.19/0.41  
% 0.19/0.41  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------