TSTP Solution File: SET625^5 by Duper---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Duper---1.0
% Problem  : SET625^5 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : duper %s

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 14:47:08 EDT 2023

% Result   : Theorem 3.64s 3.81s
% Output   : Proof 3.64s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem    : SET625^5 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command    : duper %s
% 0.12/0.33  % Computer : n010.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % WCLimit    : 300
% 0.12/0.33  % DateTime   : Sat Aug 26 09:37:50 EDT 2023
% 0.12/0.33  % CPUTime    : 
% 3.64/3.81  SZS status Theorem for theBenchmark.p
% 3.64/3.81  SZS output start Proof for theBenchmark.p
% 3.64/3.81  Clause #0 (by assumption #[]): Eq
% 3.64/3.81    (Not
% 3.64/3.81      (∀ (X Y Z : a → Prop),
% 3.64/3.81        And (Exists fun Xx => And (X Xx) (Y Xx)) (∀ (Xx : a), Y Xx → Z Xx) → Exists fun Xx => And (X Xx) (Z Xx)))
% 3.64/3.81    True
% 3.64/3.81  Clause #1 (by clausification #[0]): Eq
% 3.64/3.81    (∀ (X Y Z : a → Prop),
% 3.64/3.81      And (Exists fun Xx => And (X Xx) (Y Xx)) (∀ (Xx : a), Y Xx → Z Xx) → Exists fun Xx => And (X Xx) (Z Xx))
% 3.64/3.81    False
% 3.64/3.81  Clause #2 (by clausification #[1]): ∀ (a_1 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (Not
% 3.64/3.81        (∀ (Y Z : a → Prop),
% 3.64/3.81          And (Exists fun Xx => And (skS.0 0 a_1 Xx) (Y Xx)) (∀ (Xx : a), Y Xx → Z Xx) →
% 3.64/3.81            Exists fun Xx => And (skS.0 0 a_1 Xx) (Z Xx)))
% 3.64/3.81      True
% 3.64/3.81  Clause #3 (by clausification #[2]): ∀ (a_1 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (∀ (Y Z : a → Prop),
% 3.64/3.81        And (Exists fun Xx => And (skS.0 0 a_1 Xx) (Y Xx)) (∀ (Xx : a), Y Xx → Z Xx) →
% 3.64/3.81          Exists fun Xx => And (skS.0 0 a_1 Xx) (Z Xx))
% 3.64/3.81      False
% 3.64/3.81  Clause #4 (by clausification #[3]): ∀ (a_1 a_2 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (Not
% 3.64/3.81        (∀ (Z : a → Prop),
% 3.64/3.81          And (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 1 a_1 a_2 Xx)) (∀ (Xx : a), skS.0 1 a_1 a_2 Xx → Z Xx) →
% 3.64/3.81            Exists fun Xx => And (skS.0 0 a_1 Xx) (Z Xx)))
% 3.64/3.81      True
% 3.64/3.81  Clause #5 (by clausification #[4]): ∀ (a_1 a_2 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (∀ (Z : a → Prop),
% 3.64/3.81        And (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 1 a_1 a_2 Xx)) (∀ (Xx : a), skS.0 1 a_1 a_2 Xx → Z Xx) →
% 3.64/3.81          Exists fun Xx => And (skS.0 0 a_1 Xx) (Z Xx))
% 3.64/3.81      False
% 3.64/3.81  Clause #6 (by clausification #[5]): ∀ (a_1 a_2 a_3 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (Not
% 3.64/3.81        (And (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 1 a_1 a_2 Xx))
% 3.64/3.81            (∀ (Xx : a), skS.0 1 a_1 a_2 Xx → skS.0 2 a_1 a_2 a_3 Xx) →
% 3.64/3.81          Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 2 a_1 a_2 a_3 Xx)))
% 3.64/3.81      True
% 3.64/3.81  Clause #7 (by clausification #[6]): ∀ (a_1 a_2 a_3 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (And (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 1 a_1 a_2 Xx))
% 3.64/3.81          (∀ (Xx : a), skS.0 1 a_1 a_2 Xx → skS.0 2 a_1 a_2 a_3 Xx) →
% 3.64/3.81        Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 2 a_1 a_2 a_3 Xx))
% 3.64/3.81      False
% 3.64/3.81  Clause #8 (by clausification #[7]): ∀ (a_1 a_2 a_3 : a → Prop),
% 3.64/3.81    Eq
% 3.64/3.81      (And (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 1 a_1 a_2 Xx))
% 3.64/3.81        (∀ (Xx : a), skS.0 1 a_1 a_2 Xx → skS.0 2 a_1 a_2 a_3 Xx))
% 3.64/3.81      True
% 3.64/3.81  Clause #9 (by clausification #[7]): ∀ (a_1 a_2 a_3 : a → Prop), Eq (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 2 a_1 a_2 a_3 Xx)) False
% 3.64/3.81  Clause #10 (by clausification #[8]): ∀ (a_1 a_2 a_3 : a → Prop), Eq (∀ (Xx : a), skS.0 1 a_1 a_2 Xx → skS.0 2 a_1 a_2 a_3 Xx) True
% 3.64/3.81  Clause #11 (by clausification #[8]): ∀ (a_1 a_2 : a → Prop), Eq (Exists fun Xx => And (skS.0 0 a_1 Xx) (skS.0 1 a_1 a_2 Xx)) True
% 3.64/3.81  Clause #12 (by clausification #[10]): ∀ (a_1 a_2 : a → Prop) (a_3 : a) (a_4 : a → Prop), Eq (skS.0 1 a_1 a_2 a_3 → skS.0 2 a_1 a_2 a_4 a_3) True
% 3.64/3.81  Clause #13 (by clausification #[12]): ∀ (a_1 a_2 : a → Prop) (a_3 : a) (a_4 : a → Prop),
% 3.64/3.81    Or (Eq (skS.0 1 a_1 a_2 a_3) False) (Eq (skS.0 2 a_1 a_2 a_4 a_3) True)
% 3.64/3.81  Clause #14 (by clausification #[11]): ∀ (a_1 a_2 : a → Prop) (a_3 : a),
% 3.64/3.81    Eq (And (skS.0 0 a_1 (skS.0 3 a_1 a_2 a_3)) (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3))) True
% 3.64/3.81  Clause #15 (by clausification #[14]): ∀ (a_1 a_2 : a → Prop) (a_3 : a), Eq (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3)) True
% 3.64/3.81  Clause #16 (by clausification #[14]): ∀ (a_1 a_2 : a → Prop) (a_3 : a), Eq (skS.0 0 a_1 (skS.0 3 a_1 a_2 a_3)) True
% 3.64/3.81  Clause #17 (by superposition #[15, 13]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Or (Eq True False) (Eq (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_2 a_4)) True)
% 3.64/3.81  Clause #18 (by clausification #[17]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Eq (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_2 a_4)) True
% 3.64/3.81  Clause #19 (by clausification #[9]): ∀ (a_1 : a → Prop) (a_2 : a) (a_3 a_4 : a → Prop), Eq (And (skS.0 0 a_1 a_2) (skS.0 2 a_1 a_3 a_4 a_2)) False
% 3.64/3.81  Clause #20 (by clausification #[19]): ∀ (a_1 : a → Prop) (a_2 : a) (a_3 a_4 : a → Prop), Or (Eq (skS.0 0 a_1 a_2) False) (Eq (skS.0 2 a_1 a_3 a_4 a_2) False)
% 3.64/3.82  Clause #21 (by superposition #[20, 16]): ∀ (a_1 a_2 a_3 a_4 : a → Prop) (a_5 : a),
% 3.64/3.82    Or (Eq (skS.0 2 (fun x => a_1 x) a_2 a_3 (skS.0 3 a_1 a_4 a_5)) False) (Eq False True)
% 3.64/3.82  Clause #22 (by betaEtaReduce #[21]): ∀ (a_1 a_2 a_3 a_4 : a → Prop) (a_5 : a), Or (Eq (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_4 a_5)) False) (Eq False True)
% 3.64/3.82  Clause #23 (by clausification #[22]): ∀ (a_1 a_2 a_3 a_4 : a → Prop) (a_5 : a), Eq (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_4 a_5)) False
% 3.64/3.82  Clause #24 (by superposition #[23, 18]): Eq False True
% 3.64/3.82  Clause #25 (by clausification #[24]): False
% 3.64/3.82  SZS output end Proof for theBenchmark.p
%------------------------------------------------------------------------------