TSTP Solution File: SET587+3 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SET587+3 : TPTP v5.0.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art01.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 02:58:49 EST 2010

% Result   : Theorem 0.27s
% Output   : CNFRefutation 0.27s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   16
%            Number of leaves      :    6
% Syntax   : Number of formulae    :   59 (  11 unt;   0 def)
%            Number of atoms       :  179 (  24 equ)
%            Maximal formula atoms :    7 (   3 avg)
%            Number of connectives :  198 (  78   ~;  79   |;  32   &)
%                                         (   8 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :  106 (   6 sgn  60   !;   8   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(1,axiom,
    ! [X1,X2] :
      ( subset(X1,X2)
    <=> ! [X3] :
          ( member(X3,X1)
         => member(X3,X2) ) ),
    file('/tmp/tmpmB1vQi/sel_SET587+3.p_1',subset_defn) ).

fof(2,axiom,
    ! [X1] :
      ( empty(X1)
    <=> ! [X2] : ~ member(X2,X1) ),
    file('/tmp/tmpmB1vQi/sel_SET587+3.p_1',empty_defn) ).

fof(3,axiom,
    ! [X1,X2] :
      ( X1 = X2
    <=> ( subset(X1,X2)
        & subset(X2,X1) ) ),
    file('/tmp/tmpmB1vQi/sel_SET587+3.p_1',equal_defn) ).

fof(4,conjecture,
    ! [X1,X2] :
      ( difference(X1,X2) = empty_set
    <=> subset(X1,X2) ),
    file('/tmp/tmpmB1vQi/sel_SET587+3.p_1',prove_difference_empty_set) ).

fof(7,axiom,
    ! [X1,X2,X3] :
      ( member(X3,difference(X1,X2))
    <=> ( member(X3,X1)
        & ~ member(X3,X2) ) ),
    file('/tmp/tmpmB1vQi/sel_SET587+3.p_1',difference_defn) ).

fof(9,axiom,
    ! [X1] : ~ member(X1,empty_set),
    file('/tmp/tmpmB1vQi/sel_SET587+3.p_1',empty_set_defn) ).

fof(10,negated_conjecture,
    ~ ! [X1,X2] :
        ( difference(X1,X2) = empty_set
      <=> subset(X1,X2) ),
    inference(assume_negation,[status(cth)],[4]) ).

fof(11,plain,
    ! [X1] :
      ( empty(X1)
    <=> ! [X2] : ~ member(X2,X1) ),
    inference(fof_simplification,[status(thm)],[2,theory(equality)]) ).

fof(12,plain,
    ! [X1,X2,X3] :
      ( member(X3,difference(X1,X2))
    <=> ( member(X3,X1)
        & ~ member(X3,X2) ) ),
    inference(fof_simplification,[status(thm)],[7,theory(equality)]) ).

fof(13,plain,
    ! [X1] : ~ member(X1,empty_set),
    inference(fof_simplification,[status(thm)],[9,theory(equality)]) ).

fof(14,plain,
    ! [X1,X2] :
      ( ( ~ subset(X1,X2)
        | ! [X3] :
            ( ~ member(X3,X1)
            | member(X3,X2) ) )
      & ( ? [X3] :
            ( member(X3,X1)
            & ~ member(X3,X2) )
        | subset(X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[1]) ).

fof(15,plain,
    ! [X4,X5] :
      ( ( ~ subset(X4,X5)
        | ! [X6] :
            ( ~ member(X6,X4)
            | member(X6,X5) ) )
      & ( ? [X7] :
            ( member(X7,X4)
            & ~ member(X7,X5) )
        | subset(X4,X5) ) ),
    inference(variable_rename,[status(thm)],[14]) ).

fof(16,plain,
    ! [X4,X5] :
      ( ( ~ subset(X4,X5)
        | ! [X6] :
            ( ~ member(X6,X4)
            | member(X6,X5) ) )
      & ( ( member(esk1_2(X4,X5),X4)
          & ~ member(esk1_2(X4,X5),X5) )
        | subset(X4,X5) ) ),
    inference(skolemize,[status(esa)],[15]) ).

fof(17,plain,
    ! [X4,X5,X6] :
      ( ( ~ member(X6,X4)
        | member(X6,X5)
        | ~ subset(X4,X5) )
      & ( ( member(esk1_2(X4,X5),X4)
          & ~ member(esk1_2(X4,X5),X5) )
        | subset(X4,X5) ) ),
    inference(shift_quantors,[status(thm)],[16]) ).

fof(18,plain,
    ! [X4,X5,X6] :
      ( ( ~ member(X6,X4)
        | member(X6,X5)
        | ~ subset(X4,X5) )
      & ( member(esk1_2(X4,X5),X4)
        | subset(X4,X5) )
      & ( ~ member(esk1_2(X4,X5),X5)
        | subset(X4,X5) ) ),
    inference(distribute,[status(thm)],[17]) ).

cnf(19,plain,
    ( subset(X1,X2)
    | ~ member(esk1_2(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[18]) ).

cnf(20,plain,
    ( subset(X1,X2)
    | member(esk1_2(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[18]) ).

cnf(21,plain,
    ( member(X3,X2)
    | ~ subset(X1,X2)
    | ~ member(X3,X1) ),
    inference(split_conjunct,[status(thm)],[18]) ).

fof(22,plain,
    ! [X1] :
      ( ( ~ empty(X1)
        | ! [X2] : ~ member(X2,X1) )
      & ( ? [X2] : member(X2,X1)
        | empty(X1) ) ),
    inference(fof_nnf,[status(thm)],[11]) ).

fof(23,plain,
    ! [X3] :
      ( ( ~ empty(X3)
        | ! [X4] : ~ member(X4,X3) )
      & ( ? [X5] : member(X5,X3)
        | empty(X3) ) ),
    inference(variable_rename,[status(thm)],[22]) ).

fof(24,plain,
    ! [X3] :
      ( ( ~ empty(X3)
        | ! [X4] : ~ member(X4,X3) )
      & ( member(esk2_1(X3),X3)
        | empty(X3) ) ),
    inference(skolemize,[status(esa)],[23]) ).

fof(25,plain,
    ! [X3,X4] :
      ( ( ~ member(X4,X3)
        | ~ empty(X3) )
      & ( member(esk2_1(X3),X3)
        | empty(X3) ) ),
    inference(shift_quantors,[status(thm)],[24]) ).

cnf(26,plain,
    ( empty(X1)
    | member(esk2_1(X1),X1) ),
    inference(split_conjunct,[status(thm)],[25]) ).

cnf(27,plain,
    ( ~ empty(X1)
    | ~ member(X2,X1) ),
    inference(split_conjunct,[status(thm)],[25]) ).

fof(28,plain,
    ! [X1,X2] :
      ( ( X1 != X2
        | ( subset(X1,X2)
          & subset(X2,X1) ) )
      & ( ~ subset(X1,X2)
        | ~ subset(X2,X1)
        | X1 = X2 ) ),
    inference(fof_nnf,[status(thm)],[3]) ).

fof(29,plain,
    ! [X3,X4] :
      ( ( X3 != X4
        | ( subset(X3,X4)
          & subset(X4,X3) ) )
      & ( ~ subset(X3,X4)
        | ~ subset(X4,X3)
        | X3 = X4 ) ),
    inference(variable_rename,[status(thm)],[28]) ).

fof(30,plain,
    ! [X3,X4] :
      ( ( subset(X3,X4)
        | X3 != X4 )
      & ( subset(X4,X3)
        | X3 != X4 )
      & ( ~ subset(X3,X4)
        | ~ subset(X4,X3)
        | X3 = X4 ) ),
    inference(distribute,[status(thm)],[29]) ).

cnf(31,plain,
    ( X1 = X2
    | ~ subset(X2,X1)
    | ~ subset(X1,X2) ),
    inference(split_conjunct,[status(thm)],[30]) ).

fof(34,negated_conjecture,
    ? [X1,X2] :
      ( ( difference(X1,X2) != empty_set
        | ~ subset(X1,X2) )
      & ( difference(X1,X2) = empty_set
        | subset(X1,X2) ) ),
    inference(fof_nnf,[status(thm)],[10]) ).

fof(35,negated_conjecture,
    ? [X3,X4] :
      ( ( difference(X3,X4) != empty_set
        | ~ subset(X3,X4) )
      & ( difference(X3,X4) = empty_set
        | subset(X3,X4) ) ),
    inference(variable_rename,[status(thm)],[34]) ).

fof(36,negated_conjecture,
    ( ( difference(esk3_0,esk4_0) != empty_set
      | ~ subset(esk3_0,esk4_0) )
    & ( difference(esk3_0,esk4_0) = empty_set
      | subset(esk3_0,esk4_0) ) ),
    inference(skolemize,[status(esa)],[35]) ).

cnf(37,negated_conjecture,
    ( subset(esk3_0,esk4_0)
    | difference(esk3_0,esk4_0) = empty_set ),
    inference(split_conjunct,[status(thm)],[36]) ).

cnf(38,negated_conjecture,
    ( ~ subset(esk3_0,esk4_0)
    | difference(esk3_0,esk4_0) != empty_set ),
    inference(split_conjunct,[status(thm)],[36]) ).

fof(54,plain,
    ! [X1,X2,X3] :
      ( ( ~ member(X3,difference(X1,X2))
        | ( member(X3,X1)
          & ~ member(X3,X2) ) )
      & ( ~ member(X3,X1)
        | member(X3,X2)
        | member(X3,difference(X1,X2)) ) ),
    inference(fof_nnf,[status(thm)],[12]) ).

fof(55,plain,
    ! [X4,X5,X6] :
      ( ( ~ member(X6,difference(X4,X5))
        | ( member(X6,X4)
          & ~ member(X6,X5) ) )
      & ( ~ member(X6,X4)
        | member(X6,X5)
        | member(X6,difference(X4,X5)) ) ),
    inference(variable_rename,[status(thm)],[54]) ).

fof(56,plain,
    ! [X4,X5,X6] :
      ( ( member(X6,X4)
        | ~ member(X6,difference(X4,X5)) )
      & ( ~ member(X6,X5)
        | ~ member(X6,difference(X4,X5)) )
      & ( ~ member(X6,X4)
        | member(X6,X5)
        | member(X6,difference(X4,X5)) ) ),
    inference(distribute,[status(thm)],[55]) ).

cnf(57,plain,
    ( member(X1,difference(X2,X3))
    | member(X1,X3)
    | ~ member(X1,X2) ),
    inference(split_conjunct,[status(thm)],[56]) ).

cnf(58,plain,
    ( ~ member(X1,difference(X2,X3))
    | ~ member(X1,X3) ),
    inference(split_conjunct,[status(thm)],[56]) ).

cnf(59,plain,
    ( member(X1,X2)
    | ~ member(X1,difference(X2,X3)) ),
    inference(split_conjunct,[status(thm)],[56]) ).

fof(62,plain,
    ! [X2] : ~ member(X2,empty_set),
    inference(variable_rename,[status(thm)],[13]) ).

cnf(63,plain,
    ~ member(X1,empty_set),
    inference(split_conjunct,[status(thm)],[62]) ).

cnf(66,plain,
    ( empty(difference(X1,X2))
    | ~ member(esk2_1(difference(X1,X2)),X2) ),
    inference(spm,[status(thm)],[58,26,theory(equality)]) ).

cnf(69,plain,
    subset(empty_set,X1),
    inference(spm,[status(thm)],[63,20,theory(equality)]) ).

cnf(70,plain,
    ( subset(X1,X2)
    | ~ empty(X1) ),
    inference(spm,[status(thm)],[27,20,theory(equality)]) ).

cnf(76,plain,
    ( member(esk2_1(difference(X1,X2)),X1)
    | empty(difference(X1,X2)) ),
    inference(spm,[status(thm)],[59,26,theory(equality)]) ).

cnf(83,plain,
    ( member(esk1_2(X1,X2),difference(X1,X3))
    | member(esk1_2(X1,X2),X3)
    | subset(X1,X2) ),
    inference(spm,[status(thm)],[57,20,theory(equality)]) ).

cnf(110,plain,
    ( X1 = empty_set
    | ~ subset(X1,empty_set) ),
    inference(spm,[status(thm)],[31,69,theory(equality)]) ).

cnf(114,plain,
    ( X1 = empty_set
    | ~ empty(X1) ),
    inference(spm,[status(thm)],[110,70,theory(equality)]) ).

cnf(417,negated_conjecture,
    ( member(esk1_2(esk3_0,X1),empty_set)
    | member(esk1_2(esk3_0,X1),esk4_0)
    | subset(esk3_0,X1)
    | subset(esk3_0,esk4_0) ),
    inference(spm,[status(thm)],[83,37,theory(equality)]) ).

cnf(430,negated_conjecture,
    ( member(esk1_2(esk3_0,X1),esk4_0)
    | subset(esk3_0,X1)
    | subset(esk3_0,esk4_0) ),
    inference(sr,[status(thm)],[417,63,theory(equality)]) ).

cnf(433,negated_conjecture,
    subset(esk3_0,esk4_0),
    inference(spm,[status(thm)],[19,430,theory(equality)]) ).

cnf(438,negated_conjecture,
    ( member(X1,esk4_0)
    | ~ member(X1,esk3_0) ),
    inference(spm,[status(thm)],[21,433,theory(equality)]) ).

cnf(447,negated_conjecture,
    ( difference(esk3_0,esk4_0) != empty_set
    | $false ),
    inference(rw,[status(thm)],[38,433,theory(equality)]) ).

cnf(448,negated_conjecture,
    difference(esk3_0,esk4_0) != empty_set,
    inference(cn,[status(thm)],[447,theory(equality)]) ).

cnf(473,negated_conjecture,
    ( member(esk2_1(difference(esk3_0,X1)),esk4_0)
    | empty(difference(esk3_0,X1)) ),
    inference(spm,[status(thm)],[438,76,theory(equality)]) ).

cnf(561,negated_conjecture,
    empty(difference(esk3_0,esk4_0)),
    inference(spm,[status(thm)],[66,473,theory(equality)]) ).

cnf(571,negated_conjecture,
    difference(esk3_0,esk4_0) = empty_set,
    inference(spm,[status(thm)],[114,561,theory(equality)]) ).

cnf(580,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[571,448,theory(equality)]) ).

cnf(581,negated_conjecture,
    $false,
    580,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SET/SET587+3.p
% --creating new selector for []
% -running prover on /tmp/tmpmB1vQi/sel_SET587+3.p_1 with time limit 29
% -prover status Theorem
% Problem SET587+3.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SET/SET587+3.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SET/SET587+3.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------