TSTP Solution File: SET586^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SET586^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n185.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:30:46 EDT 2014

% Result   : Theorem 0.49s
% Output   : Proof 0.49s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SET586^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n185.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:12:41 CDT 2014
% % CPUTime  : 0.49 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x12cf830>, <kernel.Type object at 0x12cf638>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (forall (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx)))))) of role conjecture named cBOOL_PROP_40_pme
% Conjecture to prove = (forall (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx)))))):Prop
% Parameter a_DUMMY:a.
% We need to prove ['(forall (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx))))))']
% Parameter a:Type.
% Trying to prove (forall (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx))))))
% Found x20:=(x2 x1):(Y Xx)
% Found (x2 x1) as proof of (Y Xx)
% Found ((x Xx) x1) as proof of (Y Xx)
% Found ((x Xx) x1) as proof of (Y Xx)
% Found (conj00 ((x Xx) x1)) as proof of ((Z Xx)->((and (Y Xx)) (Z Xx)))
% Found ((conj0 (Z Xx)) ((x Xx) x1)) as proof of ((Z Xx)->((and (Y Xx)) (Z Xx)))
% Found (((conj (Y Xx)) (Z Xx)) ((x Xx) x1)) as proof of ((Z Xx)->((and (Y Xx)) (Z Xx)))
% Found (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))) as proof of ((Z Xx)->((and (Y Xx)) (Z Xx)))
% Found (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))) as proof of ((X Xx)->((Z Xx)->((and (Y Xx)) (Z Xx))))
% Found (and_rect00 (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1)))) as proof of ((and (Y Xx)) (Z Xx))
% Found ((and_rect0 ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1)))) as proof of ((and (Y Xx)) (Z Xx))
% Found (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1)))) as proof of ((and (Y Xx)) (Z Xx))
% Found (fun (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of ((and (Y Xx)) (Z Xx))
% Found (fun (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx)))
% Found (fun (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of (forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx))))
% Found (fun (Z:(a->Prop)) (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx)))))
% Found (fun (Y:(a->Prop)) (Z:(a->Prop)) (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of (forall (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx))))))
% Found (fun (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)) (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of (forall (Y:(a->Prop)) (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx))))))
% Found (fun (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)) (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1))))) as proof of (forall (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)), ((forall (Xx:a), ((X Xx)->(Y Xx)))->(forall (Xx:a), (((and (X Xx)) (Z Xx))->((and (Y Xx)) (Z Xx))))))
% Got proof (fun (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)) (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1)))))
% Time elapsed = 0.170053s
% node=32 cost=309.000000 depth=17
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (X:(a->Prop)) (Y:(a->Prop)) (Z:(a->Prop)) (x:(forall (Xx:a), ((X Xx)->(Y Xx)))) (Xx:a) (x0:((and (X Xx)) (Z Xx)))=> (((fun (P:Type) (x1:((X Xx)->((Z Xx)->P)))=> (((((and_rect (X Xx)) (Z Xx)) P) x1) x0)) ((and (Y Xx)) (Z Xx))) (fun (x1:(X Xx))=> (((conj (Y Xx)) (Z Xx)) ((x Xx) x1)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------