TSTP Solution File: SET510-6 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : SET510-6 : TPTP v3.4.2. Bugfixed v2.1.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art04.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 0.0s
% Output   : Assurance 0.0s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SET/SET510-6+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: neq
% detected subclass: big
% 
% strategies selected: 
% (hyper 28 #f 6 9)
% (binary-unit 28 #f 6 9)
% (binary-double 11 #f 6 9)
% (binary-double 17 #f)
% (binary-double 17 #t)
% (binary 87 #t 6 9)
% (binary-order 28 #f 6 9)
% (binary-posweight-order 58 #f)
% (binary-posweight-lex-big-order 28 #f)
% (binary-posweight-lex-small-order 11 #f)
% (binary-order-sos 28 #t)
% (binary-unit-uniteq 28 #f)
% (binary-weightorder 28 #f)
% (binary-weightorder-sos 17 #f)
% (binary-order 28 #f)
% (hyper-order 17 #f)
% (binary 141 #t)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(114,40,1,228,0,2)
% 
% 
% START OF PROOF
% 115 [] equal(X,X).
% 116 [] -member(X,Y) | -subclass(Y,Z) | member(X,Z).
% 119 [] subclass(X,universal_class).
% 120 [] -equal(X,Y) | subclass(X,Y).
% 121 [] -equal(X,Y) | subclass(Y,X).
% 123 [] -member(X,unordered_pair(Y,Z)) | equal(X,Y) | equal(X,Z).
% 127 [] equal(unordered_pair(X,X),singleton(X)).
% 138 [] member(X,intersection(Y,Z)) | -member(X,Z) | -member(X,Y).
% 139 [] -member(X,complement(Y)) | -member(X,Y).
% 140 [] member(X,complement(Y)) | -member(X,universal_class) | member(X,Y).
% 181 [] member(regular(X),X) | equal(X,null_class).
% 182 [] equal(intersection(X,regular(X)),null_class) | equal(X,null_class).
% 228 [] -equal(singleton(universal_class),null_class).
% 239 [hyper:120,115] subclass(X,X).
% 1677 [hyper:120,127] subclass(unordered_pair(X,X),singleton(X)).
% 1678 [hyper:121,127] subclass(singleton(X),unordered_pair(X,X)).
% 11120 [hyper:228,181] member(regular(singleton(universal_class)),singleton(universal_class)).
% 11122 [hyper:116,181,119] member(regular(X),universal_class) | equal(X,null_class).
% 11375 [hyper:116,11120,1678] member(regular(singleton(universal_class)),unordered_pair(universal_class,universal_class)).
% 39106 [hyper:228,182] equal(intersection(singleton(universal_class),regular(singleton(universal_class))),null_class).
% 39903 [hyper:139,11122,181] equal(complement(universal_class),null_class).
% 75708 [hyper:123,11375] equal(regular(singleton(universal_class)),universal_class).
% 76232 [hyper:116,11375,119,demod:75708] member(universal_class,universal_class).
% 76234 [hyper:116,11375,1677,demod:75708] member(universal_class,singleton(universal_class)).
% 76770 [hyper:140,76232] member(universal_class,complement(X)) | member(universal_class,X).
% 77706 [hyper:138,76234,76232] member(universal_class,intersection(singleton(universal_class),universal_class)).
% 78786 [para:75708.1.1,39106.1.1.2] equal(intersection(singleton(universal_class),universal_class),null_class).
% 97771 [hyper:116,77706,239,demod:78786] member(universal_class,null_class).
% 116138 [hyper:139,76770,76232,demod:39903] member(universal_class,complement(null_class)).
% 118119 [hyper:139,116138,cut:97771] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 9
% clause depth limited to 6
% seconds given: 28
% 
% 
% old unit clauses discarded
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    439
%  derived clauses:   202905
%  kept clauses:      77014
%  kept size sum:     0
%  kept mid-nuclei:   4708
%  kept new demods:   76
%  forw unit-subs:    75587
%  forw double-subs: 8917
%  forw overdouble-subs: 310
%  backward subs:     2
%  fast unit cutoff:  42
%  full unit cutoff:  0
%  dbl  unit cutoff:  0
%  real runtime  :  7.41
%  process. runtime:  7.41
% specific non-discr-tree subsumption statistics: 
%  tried:           869
%  length fails:    4
%  strength fails:  15
%  predlist fails:  330
%  aux str. fails:  10
%  by-lit fails:    2
%  full subs tried: 502
%  full subs fail:  197
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SET/SET510-6+eq_r.in")
% 
%------------------------------------------------------------------------------