TSTP Solution File: SET497-6 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : SET497-6 : TPTP v3.4.2. Bugfixed v2.1.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art01.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 159.6s
% Output   : Assurance 159.6s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SET/SET497-6+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: neq
% detected subclass: big
% 
% strategies selected: 
% (hyper 28 #f 6 9)
% (binary-unit 28 #f 6 9)
% (binary-double 11 #f 6 9)
% (binary-double 17 #f)
% (binary-double 17 #t)
% (binary 87 #t 6 9)
% (binary-order 28 #f 6 9)
% (binary-posweight-order 58 #f)
% (binary-posweight-lex-big-order 28 #f)
% (binary-posweight-lex-small-order 11 #f)
% (binary-order-sos 28 #t)
% (binary-unit-uniteq 28 #f)
% (binary-weightorder 28 #f)
% (binary-weightorder-sos 17 #f)
% (binary-order 28 #f)
% (hyper-order 17 #f)
% (binary 141 #t)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(115,40,0,230,0,0,527772,4,2103,528211,5,2803,528212,1,2805,528212,50,2812,528212,40,2812,528327,0,2816,555044,3,4223,558511,4,4919,571312,5,5618,571313,5,5622,571314,1,5622,571314,50,5632,571314,40,5632,571429,0,5633,602638,3,6185,605845,4,6474,612015,5,6746,612015,5,6747,612016,1,6747,612016,50,6750,612016,40,6750,612131,0,6750,646253,3,7619,649945,4,8028,660573,5,8451,660574,5,8451,660574,1,8451,660574,50,8454,660574,40,8454,660689,0,8454,702162,3,9306,707190,4,9730,717616,5,10155,717616,5,10156,717616,1,10156,717616,50,10159,717616,40,10159,717731,0,10159,822960,3,14526,829474,4,16687)
% 
% 
% START OF PROOF
% 717618 [] -member(X,Y) | -subclass(Y,Z) | member(X,Z).
% 717619 [] member(not_subclass_element(X,Y),X) | subclass(X,Y).
% 717621 [] subclass(X,universal_class).
% 717622 [] -equal(X,Y) | subclass(X,Y).
% 717623 [] -equal(X,Y) | subclass(Y,X).
% 717625 [] -member(X,unordered_pair(Y,Z)) | equal(X,Y) | equal(X,Z).
% 717626 [] member(X,unordered_pair(X,Y)) | -member(X,universal_class).
% 717629 [] equal(unordered_pair(X,X),singleton(X)).
% 717632 [] -member(ordered_pair(X,Y),cross_product(Z,U)) | member(Y,U).
% 717633 [] member(ordered_pair(X,Y),cross_product(Z,U)) | -member(Y,U) | -member(X,Z).
% 717638 [] -member(X,intersection(Y,Z)) | member(X,Y).
% 717640 [] member(X,intersection(Y,Z)) | -member(X,Z) | -member(X,Y).
% 717641 [] -member(X,complement(Y)) | -member(X,Y).
% 717642 [] member(X,complement(Y)) | -member(X,universal_class) | member(X,Y).
% 717683 [] member(regular(X),X) | equal(X,null_class).
% 717684 [] equal(intersection(X,regular(X)),null_class) | equal(X,null_class).
% 717730 [] member(z,diagonalise(element_relation)).
% 717731 [] member(z,z).
% 717732 [binary:717618,717731] -subclass(z,X) | member(z,X).
% 717745 [binary:717641.2,717730] -member(z,complement(diagonalise(element_relation))).
% 717753 [binary:717618.3,717745] -subclass(X,complement(diagonalise(element_relation))) | -member(z,X).
% 717757 [binary:717638.2,717745] -member(z,intersection(complement(diagonalise(element_relation)),X)).
% 717769 [binary:717619.2,717732] member(not_subclass_element(z,X),z) | member(z,X).
% 717771 [binary:717621,717732] member(z,universal_class).
% 717773 [binary:717623.2,717732] -equal(X,z) | member(z,X).
% 717775 [binary:717626.2,717732.2,cut:717621] member(z,unordered_pair(z,X)).
% 717806 [binary:717641.2,717771] -member(z,complement(universal_class)).
% 717849 [binary:717642.3,717806,cut:717771] member(z,complement(complement(universal_class))).
% 717976 [para:717629.1.1,717775.1.2] member(z,singleton(z)).
% 717981 [binary:717640.3,717775] member(z,intersection(unordered_pair(z,X),Y)) | -member(z,Y).
% 717991 [binary:717641.2,717976] -member(z,complement(singleton(z))).
% 718144 [binary:717641.2,717849] -member(z,complement(complement(complement(universal_class)))).
% 718154 [binary:717642.3,717991,cut:717771] member(z,complement(complement(singleton(z)))).
% 718873 [binary:717623.2,717753] -equal(complement(diagonalise(element_relation)),X) | -member(z,X).
% 719204 [para:717684.1.1,717757.1.2,binarycut:718873] -member(z,null_class).
% 719209 [binary:717618.3,719204] -member(z,X) | -subclass(X,null_class).
% 719215 [binary:717642.3,719204,cut:717771] member(z,complement(null_class)).
% 719279 [binary:717641.2,719215] -member(z,complement(complement(null_class))).
% 719531 [para:717683.2.2,719279.1.2.1.1] -member(z,complement(complement(X))) | member(regular(X),X).
% 720742 [binary:717769.2,718144] member(not_subclass_element(z,complement(complement(complement(universal_class)))),z).
% 720749 [binary:717633.2,718154,binarydemod:719531,717632,slowcut:720742] member(regular(singleton(z)),singleton(z)).
% 721892 [binary:717626,719209,cut:717771] -subclass(unordered_pair(z,X),null_class).
% 722082 [binary:717622.2,721892] -equal(unordered_pair(z,X),null_class).
% 724125 [para:717629.1.2,720749.1.2] member(regular(singleton(z)),unordered_pair(z,z)).
% 763865 [para:717684.1.1,717981.1.2,cut:719204,cut:722082] -member(z,regular(unordered_pair(z,X))).
% 764060 [para:717629.1.1,763865.1.2.1] -member(z,regular(singleton(z))).
% 764111 [binary:717773.2,764060] -equal(regular(singleton(z)),z).
% 838686 [binary:724125,717625,cut:764111] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using binary resolution
% using sos strategy
% using unit paramodulation strategy
% using unit strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 9
% clause depth limited to 6
% seconds given: 87
% 
% 
% old unit clauses discarded
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    9148
%  derived clauses:   1285616
%  kept clauses:      301204
%  kept size sum:     0
%  kept mid-nuclei:   57758
%  kept new demods:   582
%  forw unit-subs:    369959
%  forw double-subs: 63263
%  forw overdouble-subs: 10230
%  backward subs:     224
%  fast unit cutoff:  5877
%  full unit cutoff:  515
%  dbl  unit cutoff:  342
%  real runtime  :  168.86
%  process. runtime:  168.35
% specific non-discr-tree subsumption statistics: 
%  tried:           702383
%  length fails:    26740
%  strength fails:  86669
%  predlist fails:  419272
%  aux str. fails:  11229
%  by-lit fails:    3687
%  full subs tried: 149644
%  full subs fail:  139121
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SET/SET497-6+eq_r.in")
% 
%------------------------------------------------------------------------------