TSTP Solution File: SET352+4 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET352+4 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:19:10 EDT 2022

% Result   : Theorem 4.91s 1.80s
% Output   : Proof 6.92s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : SET352+4 : TPTP v8.1.0. Released v2.2.0.
% 0.07/0.13  % Command  : ePrincess-casc -timeout=%d %s
% 0.14/0.34  % Computer : n023.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Sat Jul  9 18:31:40 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 0.56/0.61          ____       _                          
% 0.56/0.61    ___  / __ \_____(_)___  ________  __________
% 0.56/0.61   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.56/0.61  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.56/0.61  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.56/0.61  
% 0.56/0.61  A Theorem Prover for First-Order Logic
% 0.63/0.61  (ePrincess v.1.0)
% 0.63/0.61  
% 0.63/0.61  (c) Philipp Rümmer, 2009-2015
% 0.63/0.61  (c) Peter Backeman, 2014-2015
% 0.63/0.61  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.63/0.61  Free software under GNU Lesser General Public License (LGPL).
% 0.63/0.61  Bug reports to peter@backeman.se
% 0.63/0.61  
% 0.63/0.61  For more information, visit http://user.uu.se/~petba168/breu/
% 0.63/0.61  
% 0.63/0.61  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.70/0.66  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.57/0.91  Prover 0: Preprocessing ...
% 2.04/1.10  Prover 0: Warning: ignoring some quantifiers
% 2.04/1.12  Prover 0: Constructing countermodel ...
% 4.11/1.61  Prover 0: gave up
% 4.11/1.61  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 4.11/1.63  Prover 1: Preprocessing ...
% 4.46/1.72  Prover 1: Constructing countermodel ...
% 4.91/1.80  Prover 1: proved (188ms)
% 4.91/1.80  
% 4.91/1.80  No countermodel exists, formula is valid
% 4.91/1.80  % SZS status Theorem for theBenchmark
% 4.91/1.80  
% 4.91/1.80  Generating proof ... found it (size 80)
% 6.53/2.17  
% 6.53/2.17  % SZS output start Proof for theBenchmark
% 6.53/2.17  Assumed formulas after preprocessing and simplification: 
% 6.53/2.17  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & sum(v2) = v3 & unordered_pair(v0, v1) = v2 & union(v0, v1) = v4 & equal_set(v3, v4) = v5 &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (product(v7) = v8) |  ~ (member(v6, v9) = v10) |  ~ (member(v6, v8) = 0) |  ? [v11] : ( ~ (v11 = 0) & member(v9, v7) = v11)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (difference(v8, v7) = v9) |  ~ (member(v6, v9) = v10) |  ? [v11] :  ? [v12] : (member(v6, v8) = v11 & member(v6, v7) = v12 & ( ~ (v11 = 0) | v12 = 0))) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (union(v7, v8) = v9) |  ~ (member(v6, v9) = v10) |  ? [v11] :  ? [v12] : ( ~ (v12 = 0) &  ~ (v11 = 0) & member(v6, v8) = v12 & member(v6, v7) = v11)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (intersection(v7, v8) = v9) |  ~ (member(v6, v9) = v10) |  ? [v11] :  ? [v12] : (member(v6, v8) = v12 & member(v6, v7) = v11 & ( ~ (v12 = 0) |  ~ (v11 = 0)))) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v9 = 0 |  ~ (sum(v7) = v8) |  ~ (member(v6, v10) = 0) |  ~ (member(v6, v8) = v9) |  ? [v11] : ( ~ (v11 = 0) & member(v10, v7) = v11)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v9 = 0 |  ~ (product(v7) = v8) |  ~ (member(v6, v8) = v9) |  ? [v10] :  ? [v11] : ( ~ (v11 = 0) & member(v10, v7) = 0 & member(v6, v10) = v11)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v9 = 0 |  ~ (unordered_pair(v7, v6) = v8) |  ~ (member(v6, v8) = v9)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v9 = 0 |  ~ (unordered_pair(v6, v7) = v8) |  ~ (member(v6, v8) = v9)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v9 = 0 |  ~ (power_set(v7) = v8) |  ~ (member(v6, v8) = v9) |  ? [v10] : ( ~ (v10 = 0) & subset(v6, v7) = v10)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v8 = v6 | v7 = v6 |  ~ (unordered_pair(v7, v8) = v9) |  ~ (member(v6, v9) = 0)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (unordered_pair(v9, v8) = v7) |  ~ (unordered_pair(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (difference(v9, v8) = v7) |  ~ (difference(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (union(v9, v8) = v7) |  ~ (union(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (intersection(v9, v8) = v7) |  ~ (intersection(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (equal_set(v9, v8) = v7) |  ~ (equal_set(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (subset(v9, v8) = v7) |  ~ (subset(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : (v7 = v6 |  ~ (member(v9, v8) = v7) |  ~ (member(v9, v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (difference(v8, v7) = v9) |  ~ (member(v6, v9) = 0) |  ? [v10] : ( ~ (v10 = 0) & member(v6, v8) = 0 & member(v6, v7) = v10)) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (union(v7, v8) = v9) |  ~ (member(v6, v9) = 0) |  ? [v10] :  ? [v11] : (member(v6, v8) = v11 & member(v6, v7) = v10 & (v11 = 0 | v10 = 0))) &  ! [v6] :  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (intersection(v7, v8) = v9) |  ~ (member(v6, v9) = 0) | (member(v6, v8) = 0 & member(v6, v7) = 0)) &  ! [v6] :  ! [v7] :  ! [v8] : (v8 = 0 |  ~ (singleton(v6) = v7) |  ~ (member(v6, v7) = v8)) &  ! [v6] :  ! [v7] :  ! [v8] : (v8 = 0 |  ~ (equal_set(v6, v7) = v8) |  ? [v9] :  ? [v10] : (subset(v7, v6) = v10 & subset(v6, v7) = v9 & ( ~ (v10 = 0) |  ~ (v9 = 0)))) &  ! [v6] :  ! [v7] :  ! [v8] : (v8 = 0 |  ~ (subset(v6, v7) = v8) |  ? [v9] :  ? [v10] : ( ~ (v10 = 0) & member(v9, v7) = v10 & member(v9, v6) = 0)) &  ! [v6] :  ! [v7] :  ! [v8] : (v7 = v6 |  ~ (product(v8) = v7) |  ~ (product(v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] : (v7 = v6 |  ~ (sum(v8) = v7) |  ~ (sum(v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] : (v7 = v6 |  ~ (singleton(v8) = v7) |  ~ (singleton(v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] : (v7 = v6 |  ~ (singleton(v7) = v8) |  ~ (member(v6, v8) = 0)) &  ! [v6] :  ! [v7] :  ! [v8] : (v7 = v6 |  ~ (power_set(v8) = v7) |  ~ (power_set(v8) = v6)) &  ! [v6] :  ! [v7] :  ! [v8] : ( ~ (sum(v7) = v8) |  ~ (member(v6, v8) = 0) |  ? [v9] : (member(v9, v7) = 0 & member(v6, v9) = 0)) &  ! [v6] :  ! [v7] :  ! [v8] : ( ~ (power_set(v7) = v8) |  ~ (member(v6, v8) = 0) | subset(v6, v7) = 0) &  ! [v6] :  ! [v7] :  ! [v8] : ( ~ (subset(v6, v7) = 0) |  ~ (member(v8, v6) = 0) | member(v8, v7) = 0) &  ! [v6] :  ! [v7] : ( ~ (equal_set(v6, v7) = 0) | (subset(v7, v6) = 0 & subset(v6, v7) = 0)) &  ! [v6] :  ~ (member(v6, empty_set) = 0))
% 6.53/2.21  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5 yields:
% 6.53/2.21  | (1)  ~ (all_0_0_0 = 0) & sum(all_0_3_3) = all_0_2_2 & unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3 & union(all_0_5_5, all_0_4_4) = all_0_1_1 & equal_set(all_0_2_2, all_0_1_1) = all_0_0_0 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v3) = v4) |  ~ (member(v0, v2) = 0) |  ? [v5] : ( ~ (v5 = 0) & member(v3, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v5 & member(v0, v1) = v6 & ( ~ (v5 = 0) | v6 = 0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) &  ~ (v5 = 0) & member(v0, v2) = v6 & member(v0, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v6 & member(v0, v1) = v5 & ( ~ (v6 = 0) |  ~ (v5 = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = 0 |  ~ (sum(v1) = v2) |  ~ (member(v0, v4) = 0) |  ~ (member(v0, v2) = v3) |  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = 0 & member(v0, v4) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v1, v0) = v2) |  ~ (member(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v0, v1) = v2) |  ~ (member(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ (member(v0, v3) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (equal_set(v3, v2) = v1) |  ~ (equal_set(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (member(v3, v2) = v1) |  ~ (member(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] : ( ~ (v4 = 0) & member(v0, v2) = 0 & member(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] :  ? [v5] : (member(v0, v2) = v5 & member(v0, v1) = v4 & (v5 = 0 | v4 = 0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = 0) | (member(v0, v2) = 0 & member(v0, v1) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (singleton(v0) = v1) |  ~ (member(v0, v1) = v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (equal_set(v0, v1) = v2) |  ? [v3] :  ? [v4] : (subset(v1, v0) = v4 & subset(v0, v1) = v3 & ( ~ (v4 = 0) |  ~ (v3 = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & member(v3, v1) = v4 & member(v3, v0) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ (member(v0, v2) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ (member(v0, v2) = 0) |  ? [v3] : (member(v3, v1) = 0 & member(v0, v3) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = 0) | subset(v0, v1) = 0) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (member(v2, v0) = 0) | member(v2, v1) = 0) &  ! [v0] :  ! [v1] : ( ~ (equal_set(v0, v1) = 0) | (subset(v1, v0) = 0 & subset(v0, v1) = 0)) &  ! [v0] :  ~ (member(v0, empty_set) = 0)
% 6.92/2.22  |
% 6.92/2.22  | Applying alpha-rule on (1) yields:
% 6.92/2.22  | (2)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v0, v1) = v2) |  ~ (member(v0, v2) = v3))
% 6.92/2.22  | (3)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (member(v3, v2) = v1) |  ~ (member(v3, v2) = v0))
% 6.92/2.22  | (4)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 6.92/2.22  | (5) equal_set(all_0_2_2, all_0_1_1) = all_0_0_0
% 6.92/2.22  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v6 & member(v0, v1) = v5 & ( ~ (v6 = 0) |  ~ (v5 = 0))))
% 6.92/2.22  | (7)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0))
% 6.92/2.22  | (8)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (singleton(v0) = v1) |  ~ (member(v0, v1) = v2))
% 6.92/2.22  | (9)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) &  ~ (v5 = 0) & member(v0, v2) = v6 & member(v0, v1) = v5))
% 6.92/2.22  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v3) = v4) |  ~ (member(v0, v2) = 0) |  ? [v5] : ( ~ (v5 = 0) & member(v3, v1) = v5))
% 6.92/2.22  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0))
% 6.92/2.22  | (12)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4))
% 6.92/2.22  | (13)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v1, v0) = v2) |  ~ (member(v0, v2) = v3))
% 6.92/2.22  | (14)  ~ (all_0_0_0 = 0)
% 6.92/2.22  | (15)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0))
% 6.92/2.22  | (16)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = 0) | (member(v0, v2) = 0 & member(v0, v1) = 0))
% 6.92/2.22  | (17)  ! [v0] :  ! [v1] : ( ~ (equal_set(v0, v1) = 0) | (subset(v1, v0) = 0 & subset(v0, v1) = 0))
% 6.92/2.22  | (18)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ (member(v0, v2) = 0) |  ? [v3] : (member(v3, v1) = 0 & member(v0, v3) = 0))
% 6.92/2.22  | (19)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0))
% 6.92/2.22  | (20)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 6.92/2.22  | (21) unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3
% 6.92/2.22  | (22) sum(all_0_3_3) = all_0_2_2
% 6.92/2.22  | (23)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & member(v3, v1) = v4 & member(v3, v0) = 0))
% 6.92/2.22  | (24)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = 0) | subset(v0, v1) = 0)
% 6.92/2.22  | (25)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] :  ? [v5] : (member(v0, v2) = v5 & member(v0, v1) = v4 & (v5 = 0 | v4 = 0)))
% 6.92/2.23  | (26)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] : ( ~ (v4 = 0) & member(v0, v2) = 0 & member(v0, v1) = v4))
% 6.92/2.23  | (27) union(all_0_5_5, all_0_4_4) = all_0_1_1
% 6.92/2.23  | (28)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (equal_set(v3, v2) = v1) |  ~ (equal_set(v3, v2) = v0))
% 6.92/2.23  | (29)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ (member(v0, v2) = 0))
% 6.92/2.23  | (30)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = 0 & member(v0, v4) = v5))
% 6.92/2.23  | (31)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0))
% 6.92/2.23  | (32)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ (member(v0, v3) = 0))
% 6.92/2.23  | (33)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v5 & member(v0, v1) = v6 & ( ~ (v5 = 0) | v6 = 0)))
% 6.92/2.23  | (34)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (member(v2, v0) = 0) | member(v2, v1) = 0)
% 6.92/2.23  | (35)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0))
% 6.92/2.23  | (36)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (equal_set(v0, v1) = v2) |  ? [v3] :  ? [v4] : (subset(v1, v0) = v4 & subset(v0, v1) = v3 & ( ~ (v4 = 0) |  ~ (v3 = 0))))
% 6.92/2.23  | (37)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0))
% 6.92/2.23  | (38)  ! [v0] :  ~ (member(v0, empty_set) = 0)
% 6.92/2.23  | (39)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = 0 |  ~ (sum(v1) = v2) |  ~ (member(v0, v4) = 0) |  ~ (member(v0, v2) = v3) |  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = v5))
% 6.92/2.23  |
% 6.92/2.23  | Instantiating formula (36) with all_0_0_0, all_0_1_1, all_0_2_2 and discharging atoms equal_set(all_0_2_2, all_0_1_1) = all_0_0_0, yields:
% 6.92/2.23  | (40) all_0_0_0 = 0 |  ? [v0] :  ? [v1] : (subset(all_0_1_1, all_0_2_2) = v1 & subset(all_0_2_2, all_0_1_1) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.92/2.23  |
% 6.92/2.23  +-Applying beta-rule and splitting (40), into two cases.
% 6.92/2.23  |-Branch one:
% 6.92/2.23  | (41) all_0_0_0 = 0
% 6.92/2.23  |
% 6.92/2.23  	| Equations (41) can reduce 14 to:
% 6.92/2.23  	| (42) $false
% 6.92/2.23  	|
% 6.92/2.23  	|-The branch is then unsatisfiable
% 6.92/2.23  |-Branch two:
% 6.92/2.23  | (14)  ~ (all_0_0_0 = 0)
% 6.92/2.23  | (44)  ? [v0] :  ? [v1] : (subset(all_0_1_1, all_0_2_2) = v1 & subset(all_0_2_2, all_0_1_1) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.92/2.23  |
% 6.92/2.23  	| Instantiating (44) with all_10_0_6, all_10_1_7 yields:
% 6.92/2.23  	| (45) subset(all_0_1_1, all_0_2_2) = all_10_0_6 & subset(all_0_2_2, all_0_1_1) = all_10_1_7 & ( ~ (all_10_0_6 = 0) |  ~ (all_10_1_7 = 0))
% 6.92/2.23  	|
% 6.92/2.23  	| Applying alpha-rule on (45) yields:
% 6.92/2.23  	| (46) subset(all_0_1_1, all_0_2_2) = all_10_0_6
% 6.92/2.23  	| (47) subset(all_0_2_2, all_0_1_1) = all_10_1_7
% 6.92/2.23  	| (48)  ~ (all_10_0_6 = 0) |  ~ (all_10_1_7 = 0)
% 6.92/2.23  	|
% 6.92/2.23  	| Instantiating formula (23) with all_10_0_6, all_0_2_2, all_0_1_1 and discharging atoms subset(all_0_1_1, all_0_2_2) = all_10_0_6, yields:
% 6.92/2.23  	| (49) all_10_0_6 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = 0 & member(v0, all_0_2_2) = v1)
% 6.92/2.23  	|
% 6.92/2.23  	| Instantiating formula (23) with all_10_1_7, all_0_1_1, all_0_2_2 and discharging atoms subset(all_0_2_2, all_0_1_1) = all_10_1_7, yields:
% 6.92/2.23  	| (50) all_10_1_7 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = v1 & member(v0, all_0_2_2) = 0)
% 6.92/2.23  	|
% 6.92/2.23  	+-Applying beta-rule and splitting (48), into two cases.
% 6.92/2.23  	|-Branch one:
% 6.92/2.23  	| (51)  ~ (all_10_0_6 = 0)
% 6.92/2.23  	|
% 6.92/2.23  		+-Applying beta-rule and splitting (49), into two cases.
% 6.92/2.23  		|-Branch one:
% 6.92/2.23  		| (52) all_10_0_6 = 0
% 6.92/2.23  		|
% 6.92/2.23  			| Equations (52) can reduce 51 to:
% 6.92/2.23  			| (42) $false
% 6.92/2.23  			|
% 6.92/2.23  			|-The branch is then unsatisfiable
% 6.92/2.23  		|-Branch two:
% 6.92/2.23  		| (51)  ~ (all_10_0_6 = 0)
% 6.92/2.23  		| (55)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = 0 & member(v0, all_0_2_2) = v1)
% 6.92/2.23  		|
% 6.92/2.23  			| Instantiating (55) with all_23_0_8, all_23_1_9 yields:
% 6.92/2.23  			| (56)  ~ (all_23_0_8 = 0) & member(all_23_1_9, all_0_1_1) = 0 & member(all_23_1_9, all_0_2_2) = all_23_0_8
% 6.92/2.24  			|
% 6.92/2.24  			| Applying alpha-rule on (56) yields:
% 6.92/2.24  			| (57)  ~ (all_23_0_8 = 0)
% 6.92/2.24  			| (58) member(all_23_1_9, all_0_1_1) = 0
% 6.92/2.24  			| (59) member(all_23_1_9, all_0_2_2) = all_23_0_8
% 6.92/2.24  			|
% 6.92/2.24  			| Instantiating formula (25) with all_0_1_1, all_0_4_4, all_0_5_5, all_23_1_9 and discharging atoms union(all_0_5_5, all_0_4_4) = all_0_1_1, member(all_23_1_9, all_0_1_1) = 0, yields:
% 6.92/2.24  			| (60)  ? [v0] :  ? [v1] : (member(all_23_1_9, all_0_4_4) = v1 & member(all_23_1_9, all_0_5_5) = v0 & (v1 = 0 | v0 = 0))
% 6.92/2.24  			|
% 6.92/2.24  			| Instantiating formula (39) with all_0_1_1, all_23_0_8, all_0_2_2, all_0_3_3, all_23_1_9 and discharging atoms sum(all_0_3_3) = all_0_2_2, member(all_23_1_9, all_0_1_1) = 0, member(all_23_1_9, all_0_2_2) = all_23_0_8, yields:
% 6.92/2.24  			| (61) all_23_0_8 = 0 |  ? [v0] : ( ~ (v0 = 0) & member(all_0_1_1, all_0_3_3) = v0)
% 6.92/2.24  			|
% 6.92/2.24  			| Instantiating (60) with all_38_0_10, all_38_1_11 yields:
% 6.92/2.24  			| (62) member(all_23_1_9, all_0_4_4) = all_38_0_10 & member(all_23_1_9, all_0_5_5) = all_38_1_11 & (all_38_0_10 = 0 | all_38_1_11 = 0)
% 6.92/2.24  			|
% 6.92/2.24  			| Applying alpha-rule on (62) yields:
% 6.92/2.24  			| (63) member(all_23_1_9, all_0_4_4) = all_38_0_10
% 6.92/2.24  			| (64) member(all_23_1_9, all_0_5_5) = all_38_1_11
% 6.92/2.24  			| (65) all_38_0_10 = 0 | all_38_1_11 = 0
% 6.92/2.24  			|
% 6.92/2.24  			+-Applying beta-rule and splitting (61), into two cases.
% 6.92/2.24  			|-Branch one:
% 6.92/2.24  			| (66) all_23_0_8 = 0
% 6.92/2.24  			|
% 6.92/2.24  				| Equations (66) can reduce 57 to:
% 6.92/2.24  				| (42) $false
% 6.92/2.24  				|
% 6.92/2.24  				|-The branch is then unsatisfiable
% 6.92/2.24  			|-Branch two:
% 6.92/2.24  			| (57)  ~ (all_23_0_8 = 0)
% 6.92/2.24  			| (69)  ? [v0] : ( ~ (v0 = 0) & member(all_0_1_1, all_0_3_3) = v0)
% 6.92/2.24  			|
% 6.92/2.24  				| Instantiating formula (39) with all_0_4_4, all_23_0_8, all_0_2_2, all_0_3_3, all_23_1_9 and discharging atoms sum(all_0_3_3) = all_0_2_2, member(all_23_1_9, all_0_2_2) = all_23_0_8, yields:
% 6.92/2.24  				| (70) all_23_0_8 = 0 |  ~ (member(all_23_1_9, all_0_4_4) = 0) |  ? [v0] : ( ~ (v0 = 0) & member(all_0_4_4, all_0_3_3) = v0)
% 6.92/2.24  				|
% 6.92/2.24  				| Instantiating formula (39) with all_0_5_5, all_23_0_8, all_0_2_2, all_0_3_3, all_23_1_9 and discharging atoms sum(all_0_3_3) = all_0_2_2, member(all_23_1_9, all_0_2_2) = all_23_0_8, yields:
% 6.92/2.24  				| (71) all_23_0_8 = 0 |  ~ (member(all_23_1_9, all_0_5_5) = 0) |  ? [v0] : ( ~ (v0 = 0) & member(all_0_5_5, all_0_3_3) = v0)
% 6.92/2.24  				|
% 6.92/2.24  				+-Applying beta-rule and splitting (65), into two cases.
% 6.92/2.24  				|-Branch one:
% 6.92/2.24  				| (72) all_38_0_10 = 0
% 6.92/2.24  				|
% 6.92/2.24  					| From (72) and (63) follows:
% 6.92/2.24  					| (73) member(all_23_1_9, all_0_4_4) = 0
% 6.92/2.24  					|
% 6.92/2.24  					+-Applying beta-rule and splitting (70), into two cases.
% 6.92/2.24  					|-Branch one:
% 6.92/2.24  					| (74)  ~ (member(all_23_1_9, all_0_4_4) = 0)
% 6.92/2.24  					|
% 6.92/2.24  						| Using (73) and (74) yields:
% 6.92/2.24  						| (75) $false
% 6.92/2.24  						|
% 6.92/2.24  						|-The branch is then unsatisfiable
% 6.92/2.24  					|-Branch two:
% 6.92/2.24  					| (73) member(all_23_1_9, all_0_4_4) = 0
% 6.92/2.24  					| (77) all_23_0_8 = 0 |  ? [v0] : ( ~ (v0 = 0) & member(all_0_4_4, all_0_3_3) = v0)
% 6.92/2.24  					|
% 6.92/2.24  						+-Applying beta-rule and splitting (77), into two cases.
% 6.92/2.24  						|-Branch one:
% 6.92/2.24  						| (66) all_23_0_8 = 0
% 6.92/2.24  						|
% 6.92/2.24  							| Equations (66) can reduce 57 to:
% 6.92/2.24  							| (42) $false
% 6.92/2.24  							|
% 6.92/2.24  							|-The branch is then unsatisfiable
% 6.92/2.24  						|-Branch two:
% 6.92/2.24  						| (57)  ~ (all_23_0_8 = 0)
% 6.92/2.24  						| (81)  ? [v0] : ( ~ (v0 = 0) & member(all_0_4_4, all_0_3_3) = v0)
% 6.92/2.24  						|
% 6.92/2.24  							| Instantiating (81) with all_102_0_13 yields:
% 6.92/2.24  							| (82)  ~ (all_102_0_13 = 0) & member(all_0_4_4, all_0_3_3) = all_102_0_13
% 6.92/2.24  							|
% 6.92/2.24  							| Applying alpha-rule on (82) yields:
% 6.92/2.24  							| (83)  ~ (all_102_0_13 = 0)
% 6.92/2.24  							| (84) member(all_0_4_4, all_0_3_3) = all_102_0_13
% 6.92/2.24  							|
% 6.92/2.24  							| Instantiating formula (13) with all_102_0_13, all_0_3_3, all_0_5_5, all_0_4_4 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_0_4_4, all_0_3_3) = all_102_0_13, yields:
% 6.92/2.24  							| (85) all_102_0_13 = 0
% 6.92/2.24  							|
% 6.92/2.24  							| Equations (85) can reduce 83 to:
% 6.92/2.24  							| (42) $false
% 6.92/2.24  							|
% 6.92/2.24  							|-The branch is then unsatisfiable
% 6.92/2.24  				|-Branch two:
% 6.92/2.24  				| (87)  ~ (all_38_0_10 = 0)
% 6.92/2.24  				| (88) all_38_1_11 = 0
% 6.92/2.24  				|
% 6.92/2.24  					| From (88) and (64) follows:
% 6.92/2.24  					| (89) member(all_23_1_9, all_0_5_5) = 0
% 6.92/2.24  					|
% 6.92/2.24  					+-Applying beta-rule and splitting (71), into two cases.
% 6.92/2.24  					|-Branch one:
% 6.92/2.24  					| (90)  ~ (member(all_23_1_9, all_0_5_5) = 0)
% 6.92/2.24  					|
% 6.92/2.24  						| Using (89) and (90) yields:
% 6.92/2.24  						| (75) $false
% 6.92/2.24  						|
% 6.92/2.24  						|-The branch is then unsatisfiable
% 6.92/2.24  					|-Branch two:
% 6.92/2.24  					| (89) member(all_23_1_9, all_0_5_5) = 0
% 6.92/2.24  					| (93) all_23_0_8 = 0 |  ? [v0] : ( ~ (v0 = 0) & member(all_0_5_5, all_0_3_3) = v0)
% 6.92/2.25  					|
% 6.92/2.25  						+-Applying beta-rule and splitting (93), into two cases.
% 6.92/2.25  						|-Branch one:
% 6.92/2.25  						| (66) all_23_0_8 = 0
% 6.92/2.25  						|
% 6.92/2.25  							| Equations (66) can reduce 57 to:
% 6.92/2.25  							| (42) $false
% 6.92/2.25  							|
% 6.92/2.25  							|-The branch is then unsatisfiable
% 6.92/2.25  						|-Branch two:
% 6.92/2.25  						| (57)  ~ (all_23_0_8 = 0)
% 6.92/2.25  						| (97)  ? [v0] : ( ~ (v0 = 0) & member(all_0_5_5, all_0_3_3) = v0)
% 6.92/2.25  						|
% 6.92/2.25  							| Instantiating (97) with all_102_0_14 yields:
% 6.92/2.25  							| (98)  ~ (all_102_0_14 = 0) & member(all_0_5_5, all_0_3_3) = all_102_0_14
% 6.92/2.25  							|
% 6.92/2.25  							| Applying alpha-rule on (98) yields:
% 6.92/2.25  							| (99)  ~ (all_102_0_14 = 0)
% 6.92/2.25  							| (100) member(all_0_5_5, all_0_3_3) = all_102_0_14
% 6.92/2.25  							|
% 6.92/2.25  							| Instantiating formula (2) with all_102_0_14, all_0_3_3, all_0_4_4, all_0_5_5 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_0_5_5, all_0_3_3) = all_102_0_14, yields:
% 6.92/2.25  							| (101) all_102_0_14 = 0
% 6.92/2.25  							|
% 6.92/2.25  							| Equations (101) can reduce 99 to:
% 6.92/2.25  							| (42) $false
% 6.92/2.25  							|
% 6.92/2.25  							|-The branch is then unsatisfiable
% 6.92/2.25  	|-Branch two:
% 6.92/2.25  	| (52) all_10_0_6 = 0
% 6.92/2.25  	| (104)  ~ (all_10_1_7 = 0)
% 6.92/2.25  	|
% 6.92/2.25  		+-Applying beta-rule and splitting (50), into two cases.
% 6.92/2.25  		|-Branch one:
% 6.92/2.25  		| (105) all_10_1_7 = 0
% 6.92/2.25  		|
% 6.92/2.25  			| Equations (105) can reduce 104 to:
% 6.92/2.25  			| (42) $false
% 6.92/2.25  			|
% 6.92/2.25  			|-The branch is then unsatisfiable
% 6.92/2.25  		|-Branch two:
% 6.92/2.25  		| (104)  ~ (all_10_1_7 = 0)
% 6.92/2.25  		| (108)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = v1 & member(v0, all_0_2_2) = 0)
% 6.92/2.25  		|
% 6.92/2.25  			| Instantiating (108) with all_23_0_15, all_23_1_16 yields:
% 6.92/2.25  			| (109)  ~ (all_23_0_15 = 0) & member(all_23_1_16, all_0_1_1) = all_23_0_15 & member(all_23_1_16, all_0_2_2) = 0
% 6.92/2.25  			|
% 6.92/2.25  			| Applying alpha-rule on (109) yields:
% 6.92/2.25  			| (110)  ~ (all_23_0_15 = 0)
% 6.92/2.25  			| (111) member(all_23_1_16, all_0_1_1) = all_23_0_15
% 6.92/2.25  			| (112) member(all_23_1_16, all_0_2_2) = 0
% 6.92/2.25  			|
% 6.92/2.25  			| Instantiating formula (9) with all_23_0_15, all_0_1_1, all_0_4_4, all_0_5_5, all_23_1_16 and discharging atoms union(all_0_5_5, all_0_4_4) = all_0_1_1, member(all_23_1_16, all_0_1_1) = all_23_0_15, yields:
% 6.92/2.25  			| (113) all_23_0_15 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) &  ~ (v0 = 0) & member(all_23_1_16, all_0_4_4) = v1 & member(all_23_1_16, all_0_5_5) = v0)
% 6.92/2.25  			|
% 6.92/2.25  			| Instantiating formula (18) with all_0_2_2, all_0_3_3, all_23_1_16 and discharging atoms sum(all_0_3_3) = all_0_2_2, member(all_23_1_16, all_0_2_2) = 0, yields:
% 6.92/2.25  			| (114)  ? [v0] : (member(v0, all_0_3_3) = 0 & member(all_23_1_16, v0) = 0)
% 6.92/2.25  			|
% 6.92/2.25  			| Instantiating (114) with all_38_0_17 yields:
% 6.92/2.25  			| (115) member(all_38_0_17, all_0_3_3) = 0 & member(all_23_1_16, all_38_0_17) = 0
% 6.92/2.25  			|
% 6.92/2.25  			| Applying alpha-rule on (115) yields:
% 6.92/2.25  			| (116) member(all_38_0_17, all_0_3_3) = 0
% 6.92/2.25  			| (117) member(all_23_1_16, all_38_0_17) = 0
% 6.92/2.25  			|
% 6.92/2.25  			+-Applying beta-rule and splitting (113), into two cases.
% 6.92/2.25  			|-Branch one:
% 6.92/2.25  			| (118) all_23_0_15 = 0
% 6.92/2.25  			|
% 6.92/2.25  				| Equations (118) can reduce 110 to:
% 6.92/2.25  				| (42) $false
% 6.92/2.25  				|
% 6.92/2.25  				|-The branch is then unsatisfiable
% 6.92/2.25  			|-Branch two:
% 6.92/2.25  			| (110)  ~ (all_23_0_15 = 0)
% 6.92/2.25  			| (121)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) &  ~ (v0 = 0) & member(all_23_1_16, all_0_4_4) = v1 & member(all_23_1_16, all_0_5_5) = v0)
% 6.92/2.25  			|
% 6.92/2.25  				| Instantiating (121) with all_44_0_18, all_44_1_19 yields:
% 6.92/2.25  				| (122)  ~ (all_44_0_18 = 0) &  ~ (all_44_1_19 = 0) & member(all_23_1_16, all_0_4_4) = all_44_0_18 & member(all_23_1_16, all_0_5_5) = all_44_1_19
% 6.92/2.25  				|
% 6.92/2.25  				| Applying alpha-rule on (122) yields:
% 6.92/2.25  				| (123)  ~ (all_44_0_18 = 0)
% 6.92/2.25  				| (124)  ~ (all_44_1_19 = 0)
% 6.92/2.25  				| (125) member(all_23_1_16, all_0_4_4) = all_44_0_18
% 6.92/2.25  				| (126) member(all_23_1_16, all_0_5_5) = all_44_1_19
% 6.92/2.25  				|
% 6.92/2.25  				| Instantiating formula (32) with all_0_3_3, all_0_4_4, all_0_5_5, all_38_0_17 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_38_0_17, all_0_3_3) = 0, yields:
% 6.92/2.25  				| (127) all_38_0_17 = all_0_4_4 | all_38_0_17 = all_0_5_5
% 6.92/2.25  				|
% 6.92/2.25  				| Instantiating formula (3) with all_23_1_16, all_0_4_4, all_44_0_18, 0 and discharging atoms member(all_23_1_16, all_0_4_4) = all_44_0_18, yields:
% 6.92/2.25  				| (128) all_44_0_18 = 0 |  ~ (member(all_23_1_16, all_0_4_4) = 0)
% 6.92/2.25  				|
% 6.92/2.25  				| Instantiating formula (3) with all_23_1_16, all_0_5_5, all_44_1_19, 0 and discharging atoms member(all_23_1_16, all_0_5_5) = all_44_1_19, yields:
% 6.92/2.25  				| (129) all_44_1_19 = 0 |  ~ (member(all_23_1_16, all_0_5_5) = 0)
% 6.92/2.25  				|
% 6.92/2.25  				+-Applying beta-rule and splitting (128), into two cases.
% 6.92/2.25  				|-Branch one:
% 6.92/2.25  				| (130)  ~ (member(all_23_1_16, all_0_4_4) = 0)
% 6.92/2.25  				|
% 6.92/2.25  					| Using (117) and (130) yields:
% 6.92/2.25  					| (131)  ~ (all_38_0_17 = all_0_4_4)
% 6.92/2.25  					|
% 6.92/2.25  					+-Applying beta-rule and splitting (127), into two cases.
% 6.92/2.25  					|-Branch one:
% 6.92/2.25  					| (132) all_38_0_17 = all_0_4_4
% 6.92/2.25  					|
% 6.92/2.25  						| Equations (132) can reduce 131 to:
% 6.92/2.25  						| (42) $false
% 6.92/2.25  						|
% 6.92/2.25  						|-The branch is then unsatisfiable
% 6.92/2.25  					|-Branch two:
% 6.92/2.25  					| (131)  ~ (all_38_0_17 = all_0_4_4)
% 6.92/2.25  					| (135) all_38_0_17 = all_0_5_5
% 6.92/2.25  					|
% 6.92/2.25  						| From (135) and (117) follows:
% 6.92/2.25  						| (136) member(all_23_1_16, all_0_5_5) = 0
% 6.92/2.25  						|
% 6.92/2.25  						+-Applying beta-rule and splitting (129), into two cases.
% 6.92/2.25  						|-Branch one:
% 6.92/2.25  						| (137)  ~ (member(all_23_1_16, all_0_5_5) = 0)
% 6.92/2.25  						|
% 6.92/2.25  							| Using (136) and (137) yields:
% 6.92/2.25  							| (75) $false
% 6.92/2.25  							|
% 6.92/2.25  							|-The branch is then unsatisfiable
% 6.92/2.25  						|-Branch two:
% 6.92/2.25  						| (136) member(all_23_1_16, all_0_5_5) = 0
% 6.92/2.25  						| (140) all_44_1_19 = 0
% 6.92/2.25  						|
% 6.92/2.25  							| Equations (140) can reduce 124 to:
% 6.92/2.25  							| (42) $false
% 6.92/2.25  							|
% 6.92/2.25  							|-The branch is then unsatisfiable
% 6.92/2.25  				|-Branch two:
% 6.92/2.25  				| (142) member(all_23_1_16, all_0_4_4) = 0
% 6.92/2.25  				| (143) all_44_0_18 = 0
% 6.92/2.25  				|
% 6.92/2.25  					| Equations (143) can reduce 123 to:
% 6.92/2.25  					| (42) $false
% 6.92/2.25  					|
% 6.92/2.25  					|-The branch is then unsatisfiable
% 6.92/2.25  % SZS output end Proof for theBenchmark
% 6.92/2.25  
% 6.92/2.25  1635ms
%------------------------------------------------------------------------------