TSTP Solution File: SET328-6 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET328-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:48:51 EDT 2022

% Result   : Timeout 300.07s 300.46s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.14  % Problem  : SET328-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% 0.04/0.14  % Command  : bliksem %s
% 0.15/0.36  % Computer : n027.cluster.edu
% 0.15/0.36  % Model    : x86_64 x86_64
% 0.15/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.36  % Memory   : 8042.1875MB
% 0.15/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.36  % CPULimit : 300
% 0.15/0.36  % DateTime : Sun Jul 10 22:32:33 EDT 2022
% 0.15/0.37  % CPUTime  : 
% 0.82/1.18  *** allocated 10000 integers for termspace/termends
% 0.82/1.18  *** allocated 10000 integers for clauses
% 0.82/1.18  *** allocated 10000 integers for justifications
% 0.82/1.18  Bliksem 1.12
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Automatic Strategy Selection
% 0.82/1.18  
% 0.82/1.18  Clauses:
% 0.82/1.18  [
% 0.82/1.18     [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ],
% 0.82/1.18     [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y ) ],
% 0.82/1.18     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), subclass( X, Y ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ subclass( X, 'universal_class' ) ],
% 0.82/1.18     [ ~( =( X, Y ) ), subclass( X, Y ) ],
% 0.82/1.18     [ ~( =( X, Y ) ), subclass( Y, X ) ],
% 0.82/1.18     [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y ) ],
% 0.82/1.18     [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), =( X, Z ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( X, Y
% 0.82/1.18     ) ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( Y, X
% 0.82/1.18     ) ) ],
% 0.82/1.18     [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ],
% 0.82/1.18     [ =( 'unordered_pair'( X, X ), singleton( X ) ) ],
% 0.82/1.18     [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X, singleton( Y
% 0.82/1.18     ) ) ), 'ordered_pair'( X, Y ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.82/1.18    X, Z ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.82/1.18    Y, T ) ],
% 0.82/1.18     [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 'ordered_pair'( X, Z
% 0.82/1.18     ), 'cross_product'( Y, T ) ) ],
% 0.82/1.18     [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( first( X
% 0.82/1.18     ), second( X ) ), X ) ],
% 0.82/1.18     [ subclass( 'element_relation', 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' ) ), member( X, 
% 0.82/1.18    Y ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.82/1.18    , 'universal_class' ) ) ), ~( member( X, Y ) ), member( 'ordered_pair'( X
% 0.82/1.18    , Y ), 'element_relation' ) ],
% 0.82/1.18     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ],
% 0.82/1.18     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ],
% 0.82/1.18     [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, intersection( Y, 
% 0.82/1.18    Z ) ) ],
% 0.82/1.18     [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), member( X, complement( Y ) ), 
% 0.82/1.18    member( X, Y ) ],
% 0.82/1.18     [ =( complement( intersection( complement( X ), complement( Y ) ) ), 
% 0.82/1.18    union( X, Y ) ) ],
% 0.82/1.18     [ =( intersection( complement( intersection( X, Y ) ), complement( 
% 0.82/1.18    intersection( complement( X ), complement( Y ) ) ) ), 
% 0.82/1.18    'symmetric_difference'( X, Y ) ) ],
% 0.82/1.18     [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( X, Y, Z ) ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( Z, X, Y ) ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 'null_class' )
% 0.82/1.18     ), ~( member( Y, 'domain_of'( X ) ) ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), =( restrict( Y, singleton( X ), 
% 0.82/1.18    'universal_class' ), 'null_class' ), member( X, 'domain_of'( Y ) ) ],
% 0.82/1.18     [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 0.82/1.18    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), rotate( T ) )
% 0.82/1.18     ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.82/1.18    member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 'cross_product'( 
% 0.82/1.18    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.82/1.18    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X ), 
% 0.82/1.18    Y ), rotate( T ) ) ],
% 0.82/1.18     [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 0.82/1.18    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), flip( T ) ) )
% 0.82/1.18    , member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.82/1.18    member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 'cross_product'( 
% 0.82/1.18    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.82/1.18    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), 
% 0.82/1.18    Z ), flip( T ) ) ],
% 0.82/1.18     [ =( 'domain_of'( flip( 'cross_product'( X, 'universal_class' ) ) ), 
% 0.82/1.18    inverse( X ) ) ],
% 0.82/1.18     [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ],
% 0.82/1.18     [ =( first( 'not_subclass_element'( restrict( X, Y, singleton( Z ) ), 
% 0.82/1.18    'null_class' ) ), domain( X, Y, Z ) ) ],
% 0.82/1.18     [ =( second( 'not_subclass_element'( restrict( X, singleton( Y ), Z ), 
% 0.82/1.18    'null_class' ) ), range( X, Y, Z ) ) ],
% 0.82/1.18     [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), image( X, Y ) )
% 0.82/1.18     ],
% 0.82/1.18     [ =( union( X, singleton( X ) ), successor( X ) ) ],
% 0.82/1.18     [ subclass( 'successor_relation', 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation' ) ), =( 
% 0.82/1.18    successor( X ), Y ) ],
% 0.82/1.18     [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( X, Y ), 
% 0.82/1.18    'cross_product'( 'universal_class', 'universal_class' ) ) ), member( 
% 0.82/1.18    'ordered_pair'( X, Y ), 'successor_relation' ) ],
% 0.82/1.18     [ ~( inductive( X ) ), member( 'null_class', X ) ],
% 0.82/1.18     [ ~( inductive( X ) ), subclass( image( 'successor_relation', X ), X ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 0.82/1.18    'successor_relation', X ), X ) ), inductive( X ) ],
% 0.82/1.18     [ inductive( omega ) ],
% 0.82/1.18     [ ~( inductive( X ) ), subclass( omega, X ) ],
% 0.82/1.18     [ member( omega, 'universal_class' ) ],
% 0.82/1.18     [ =( 'domain_of'( restrict( 'element_relation', 'universal_class', X ) )
% 0.82/1.18    , 'sum_class'( X ) ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( X ), 
% 0.82/1.18    'universal_class' ) ],
% 0.82/1.18     [ =( complement( image( 'element_relation', complement( X ) ) ), 
% 0.82/1.18    'power_class'( X ) ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), member( 'power_class'( X ), 
% 0.82/1.18    'universal_class' ) ],
% 0.82/1.18     [ subclass( compose( X, Y ), 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), member( Y, 
% 0.82/1.18    image( Z, image( T, singleton( X ) ) ) ) ],
% 0.82/1.18     [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) ), ~( member( 
% 0.82/1.18    'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 0.82/1.18     ) ],
% 0.82/1.18     [ ~( 'single_valued_class'( X ) ), subclass( compose( X, inverse( X ) )
% 0.82/1.18    , 'identity_relation' ) ],
% 0.82/1.18     [ ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) ), 
% 0.82/1.18    'single_valued_class'( X ) ],
% 0.82/1.18     [ ~( function( X ) ), subclass( X, 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ],
% 0.82/1.18     [ ~( function( X ) ), subclass( compose( X, inverse( X ) ), 
% 0.82/1.18    'identity_relation' ) ],
% 0.82/1.18     [ ~( subclass( X, 'cross_product'( 'universal_class', 'universal_class'
% 0.82/1.18     ) ) ), ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) )
% 0.82/1.18    , function( X ) ],
% 0.82/1.18     [ ~( function( X ) ), ~( member( Y, 'universal_class' ) ), member( image( 
% 0.82/1.18    X, Y ), 'universal_class' ) ],
% 0.82/1.18     [ =( X, 'null_class' ), member( regular( X ), X ) ],
% 0.82/1.18     [ =( X, 'null_class' ), =( intersection( X, regular( X ) ), 'null_class'
% 0.82/1.18     ) ],
% 0.82/1.18     [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, Y ) ) ],
% 0.82/1.18     [ function( choice ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), =( X, 'null_class' ), member( 
% 0.82/1.18    apply( choice, X ), X ) ],
% 0.82/1.18     [ ~( 'one_to_one'( X ) ), function( X ) ],
% 0.82/1.18     [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ],
% 0.82/1.18     [ ~( function( inverse( X ) ) ), ~( function( X ) ), 'one_to_one'( X ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ =( intersection( 'cross_product'( 'universal_class', 'universal_class'
% 0.82/1.18     ), intersection( 'cross_product'( 'universal_class', 'universal_class' )
% 0.82/1.18    , complement( compose( complement( 'element_relation' ), inverse( 
% 0.82/1.18    'element_relation' ) ) ) ) ), 'subset_relation' ) ],
% 0.82/1.18     [ =( intersection( inverse( 'subset_relation' ), 'subset_relation' ), 
% 0.82/1.18    'identity_relation' ) ],
% 0.82/1.18     [ =( complement( 'domain_of'( intersection( X, 'identity_relation' ) ) )
% 0.82/1.18    , diagonalise( X ) ) ],
% 0.82/1.18     [ =( intersection( 'domain_of'( X ), diagonalise( compose( inverse( 
% 0.82/1.18    'element_relation' ), X ) ) ), cantor( X ) ) ],
% 0.82/1.18     [ ~( operation( X ) ), function( X ) ],
% 0.82/1.18     [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 'domain_of'( X )
% 0.82/1.18     ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ],
% 0.82/1.18     [ ~( operation( X ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.82/1.18    'domain_of'( X ) ) ) ],
% 0.82/1.18     [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 'domain_of'( X
% 0.82/1.18     ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ), ~( 
% 0.82/1.18    subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), operation( 
% 0.82/1.18    X ) ],
% 0.82/1.18     [ ~( compatible( X, Y, Z ) ), function( X ) ],
% 0.82/1.18     [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( Y ) ), 
% 0.82/1.18    'domain_of'( X ) ) ],
% 0.82/1.18     [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.82/1.18    'domain_of'( Z ) ) ) ],
% 0.82/1.18     [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y ) ), 'domain_of'( 
% 0.82/1.18    X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( Z ) ) )
% 0.82/1.18     ), compatible( X, Y, Z ) ],
% 0.82/1.18     [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ],
% 0.82/1.18     [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ],
% 0.82/1.18     [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ],
% 0.82/1.18     [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( T, U ), 
% 0.82/1.18    'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T ), apply( 
% 0.82/1.18    X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ],
% 0.82/1.18     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.82/1.18    member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 0.82/1.18    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 0.82/1.18    , Y ) ],
% 0.82/1.18     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.82/1.18    ~( =( apply( Y, 'ordered_pair'( apply( Z, 'not_homomorphism1'( Z, X, Y )
% 0.82/1.18     ), apply( Z, 'not_homomorphism2'( Z, X, Y ) ) ) ), apply( Z, apply( X, 
% 0.82/1.18    'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 'not_homomorphism2'( Z, X
% 0.82/1.18    , Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ],
% 0.82/1.18     [ subclass( 'compose_class'( X ), 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ), =( 
% 0.82/1.18    compose( Z, X ), Y ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.82/1.18    , 'universal_class' ) ) ), ~( =( compose( Z, X ), Y ) ), member( 
% 0.82/1.18    'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ],
% 0.82/1.18     [ subclass( 'composition_function', 'cross_product'( 'universal_class', 
% 0.82/1.18    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.82/1.18    'composition_function' ) ), =( compose( X, Y ), Z ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.82/1.18    , 'universal_class' ) ) ), member( 'ordered_pair'( X, 'ordered_pair'( Y, 
% 0.82/1.18    compose( X, Y ) ) ), 'composition_function' ) ],
% 0.82/1.18     [ subclass( 'domain_relation', 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, Y ), 'domain_relation' ) ), =( 
% 0.82/1.18    'domain_of'( X ), Y ) ],
% 0.82/1.18     [ ~( member( X, 'universal_class' ) ), member( 'ordered_pair'( X, 
% 0.82/1.18    'domain_of'( X ) ), 'domain_relation' ) ],
% 0.82/1.18     [ =( first( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.82/1.18    'identity_relation' ) ), 'single_valued1'( X ) ) ],
% 0.82/1.18     [ =( second( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.82/1.18    'identity_relation' ) ), 'single_valued2'( X ) ) ],
% 0.82/1.18     [ =( domain( X, image( inverse( X ), singleton( 'single_valued1'( X ) )
% 0.82/1.18     ), 'single_valued2'( X ) ), 'single_valued3'( X ) ) ],
% 0.82/1.18     [ =( intersection( complement( compose( 'element_relation', complement( 
% 0.82/1.18    'identity_relation' ) ) ), 'element_relation' ), 'singleton_relation' ) ]
% 0.82/1.18    ,
% 0.82/1.18     [ subclass( 'application_function', 'cross_product'( 'universal_class', 
% 0.82/1.18    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.82/1.18    'application_function' ) ), member( Y, 'domain_of'( X ) ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.82/1.18    'application_function' ) ), =( apply( X, Y ), Z ) ],
% 0.82/1.18     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.82/1.18    'cross_product'( 'universal_class', 'cross_product'( 'universal_class', 
% 0.82/1.18    'universal_class' ) ) ) ), ~( member( Y, 'domain_of'( X ) ) ), member( 
% 0.82/1.18    'ordered_pair'( X, 'ordered_pair'( Y, apply( X, Y ) ) ), 
% 0.82/1.18    'application_function' ) ],
% 0.82/1.18     [ ~( maps( X, Y, Z ) ), function( X ) ],
% 0.82/1.18     [ ~( maps( X, Y, Z ) ), =( 'domain_of'( X ), Y ) ],
% 7.65/8.05     [ ~( maps( X, Y, Z ) ), subclass( 'range_of'( X ), Z ) ],
% 7.65/8.05     [ ~( function( X ) ), ~( subclass( 'range_of'( X ), Y ) ), maps( X, 
% 7.65/8.05    'domain_of'( X ), Y ) ],
% 7.65/8.05     [ member( y, image( xr, singleton( x ) ) ) ],
% 7.65/8.05     [ member( x, 'universal_class' ) ],
% 7.65/8.05     [ ~( member( 'ordered_pair'( x, y ), xr ) ) ]
% 7.65/8.05  ] .
% 7.65/8.05  
% 7.65/8.05  
% 7.65/8.05  percentage equality = 0.221719, percentage horn = 0.930435
% 7.65/8.05  This is a problem with some equality
% 7.65/8.05  
% 7.65/8.05  
% 7.65/8.05  
% 7.65/8.05  Options Used:
% 7.65/8.05  
% 7.65/8.05  useres =            1
% 7.65/8.05  useparamod =        1
% 7.65/8.05  useeqrefl =         1
% 7.65/8.05  useeqfact =         1
% 7.65/8.05  usefactor =         1
% 7.65/8.05  usesimpsplitting =  0
% 7.65/8.05  usesimpdemod =      5
% 7.65/8.05  usesimpres =        3
% 7.65/8.05  
% 7.65/8.05  resimpinuse      =  1000
% 7.65/8.05  resimpclauses =     20000
% 7.65/8.05  substype =          eqrewr
% 7.65/8.05  backwardsubs =      1
% 7.65/8.05  selectoldest =      5
% 7.65/8.05  
% 7.65/8.05  litorderings [0] =  split
% 7.65/8.05  litorderings [1] =  extend the termordering, first sorting on arguments
% 7.65/8.05  
% 7.65/8.05  termordering =      kbo
% 7.65/8.05  
% 7.65/8.05  litapriori =        0
% 7.65/8.05  termapriori =       1
% 7.65/8.05  litaposteriori =    0
% 7.65/8.05  termaposteriori =   0
% 7.65/8.05  demodaposteriori =  0
% 7.65/8.05  ordereqreflfact =   0
% 7.65/8.05  
% 7.65/8.05  litselect =         negord
% 7.65/8.05  
% 7.65/8.05  maxweight =         15
% 7.65/8.05  maxdepth =          30000
% 7.65/8.05  maxlength =         115
% 7.65/8.05  maxnrvars =         195
% 7.65/8.05  excuselevel =       1
% 7.65/8.05  increasemaxweight = 1
% 7.65/8.05  
% 7.65/8.05  maxselected =       10000000
% 7.65/8.05  maxnrclauses =      10000000
% 7.65/8.05  
% 7.65/8.05  showgenerated =    0
% 7.65/8.05  showkept =         0
% 7.65/8.05  showselected =     0
% 7.65/8.05  showdeleted =      0
% 7.65/8.05  showresimp =       1
% 7.65/8.05  showstatus =       2000
% 7.65/8.05  
% 7.65/8.05  prologoutput =     1
% 7.65/8.05  nrgoals =          5000000
% 7.65/8.05  totalproof =       1
% 7.65/8.05  
% 7.65/8.05  Symbols occurring in the translation:
% 7.65/8.05  
% 7.65/8.05  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 7.65/8.05  .  [1, 2]      (w:1, o:65, a:1, s:1, b:0), 
% 7.65/8.05  !  [4, 1]      (w:0, o:36, a:1, s:1, b:0), 
% 7.65/8.05  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 7.65/8.05  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 7.65/8.05  subclass  [41, 2]      (w:1, o:90, a:1, s:1, b:0), 
% 7.65/8.05  member  [43, 2]      (w:1, o:91, a:1, s:1, b:0), 
% 7.65/8.05  'not_subclass_element'  [44, 2]      (w:1, o:92, a:1, s:1, b:0), 
% 7.65/8.05  'universal_class'  [45, 0]      (w:1, o:22, a:1, s:1, b:0), 
% 7.65/8.05  'unordered_pair'  [46, 2]      (w:1, o:93, a:1, s:1, b:0), 
% 7.65/8.05  singleton  [47, 1]      (w:1, o:44, a:1, s:1, b:0), 
% 7.65/8.05  'ordered_pair'  [48, 2]      (w:1, o:94, a:1, s:1, b:0), 
% 7.65/8.05  'cross_product'  [50, 2]      (w:1, o:95, a:1, s:1, b:0), 
% 7.65/8.05  first  [52, 1]      (w:1, o:45, a:1, s:1, b:0), 
% 7.65/8.05  second  [53, 1]      (w:1, o:46, a:1, s:1, b:0), 
% 7.65/8.05  'element_relation'  [54, 0]      (w:1, o:27, a:1, s:1, b:0), 
% 7.65/8.05  intersection  [55, 2]      (w:1, o:97, a:1, s:1, b:0), 
% 7.65/8.05  complement  [56, 1]      (w:1, o:47, a:1, s:1, b:0), 
% 7.65/8.05  union  [57, 2]      (w:1, o:98, a:1, s:1, b:0), 
% 7.65/8.05  'symmetric_difference'  [58, 2]      (w:1, o:99, a:1, s:1, b:0), 
% 7.65/8.05  restrict  [60, 3]      (w:1, o:102, a:1, s:1, b:0), 
% 7.65/8.05  'null_class'  [61, 0]      (w:1, o:28, a:1, s:1, b:0), 
% 7.65/8.05  'domain_of'  [62, 1]      (w:1, o:50, a:1, s:1, b:0), 
% 7.65/8.05  rotate  [63, 1]      (w:1, o:41, a:1, s:1, b:0), 
% 7.65/8.05  flip  [65, 1]      (w:1, o:51, a:1, s:1, b:0), 
% 7.65/8.05  inverse  [66, 1]      (w:1, o:52, a:1, s:1, b:0), 
% 7.65/8.05  'range_of'  [67, 1]      (w:1, o:42, a:1, s:1, b:0), 
% 7.65/8.05  domain  [68, 3]      (w:1, o:104, a:1, s:1, b:0), 
% 7.65/8.05  range  [69, 3]      (w:1, o:105, a:1, s:1, b:0), 
% 7.65/8.05  image  [70, 2]      (w:1, o:96, a:1, s:1, b:0), 
% 7.65/8.05  successor  [71, 1]      (w:1, o:53, a:1, s:1, b:0), 
% 7.65/8.05  'successor_relation'  [72, 0]      (w:1, o:6, a:1, s:1, b:0), 
% 7.65/8.05  inductive  [73, 1]      (w:1, o:54, a:1, s:1, b:0), 
% 7.65/8.05  omega  [74, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 7.65/8.05  'sum_class'  [75, 1]      (w:1, o:55, a:1, s:1, b:0), 
% 7.65/8.05  'power_class'  [76, 1]      (w:1, o:58, a:1, s:1, b:0), 
% 7.65/8.05  compose  [78, 2]      (w:1, o:100, a:1, s:1, b:0), 
% 7.65/8.05  'single_valued_class'  [79, 1]      (w:1, o:59, a:1, s:1, b:0), 
% 7.65/8.05  'identity_relation'  [80, 0]      (w:1, o:29, a:1, s:1, b:0), 
% 7.65/8.05  function  [82, 1]      (w:1, o:60, a:1, s:1, b:0), 
% 7.65/8.05  regular  [83, 1]      (w:1, o:43, a:1, s:1, b:0), 
% 7.65/8.05  apply  [84, 2]      (w:1, o:101, a:1, s:1, b:0), 
% 7.65/8.05  choice  [85, 0]      (w:1, o:30, a:1, s:1, b:0), 
% 7.65/8.05  'one_to_one'  [86, 1]      (w:1, o:56, a:1, s:1, b:0), 
% 7.65/8.05  'subset_relation'  [87, 0]      (w:1, o:5, a:1, s:1, b:0), 
% 7.65/8.05  diagonalise  [88, 1]      (w:1, o:61, a:1, s:1, b:0), 
% 7.65/8.05  cantor  [89, 1]      (w:1, o:48, a:1, s:1, b:0), 
% 7.65/8.05  operation  [90, 1]      (w:1, o:57, a:1, s:1, b:0), 
% 7.65/8.05  compatible  [94, 3]      (w:1, o:103, a:1, s:1, b:0), 
% 7.65/8.05  homomorphism  [95, 3]      (w:1, o:106, a:1, s:1, b:0), 
% 130.33/130.74  'not_homomorphism1'  [96, 3]      (w:1, o:108, a:1, s:1, b:0), 
% 130.33/130.74  'not_homomorphism2'  [97, 3]      (w:1, o:109, a:1, s:1, b:0), 
% 130.33/130.74  'compose_class'  [98, 1]      (w:1, o:49, a:1, s:1, b:0), 
% 130.33/130.74  'composition_function'  [99, 0]      (w:1, o:31, a:1, s:1, b:0), 
% 130.33/130.74  'domain_relation'  [100, 0]      (w:1, o:26, a:1, s:1, b:0), 
% 130.33/130.74  'single_valued1'  [101, 1]      (w:1, o:62, a:1, s:1, b:0), 
% 130.33/130.74  'single_valued2'  [102, 1]      (w:1, o:63, a:1, s:1, b:0), 
% 130.33/130.74  'single_valued3'  [103, 1]      (w:1, o:64, a:1, s:1, b:0), 
% 130.33/130.74  'singleton_relation'  [104, 0]      (w:1, o:7, a:1, s:1, b:0), 
% 130.33/130.74  'application_function'  [105, 0]      (w:1, o:32, a:1, s:1, b:0), 
% 130.33/130.74  maps  [106, 3]      (w:1, o:107, a:1, s:1, b:0), 
% 130.33/130.74  y  [107, 0]      (w:1, o:35, a:1, s:1, b:0), 
% 130.33/130.74  xr  [108, 0]      (w:1, o:33, a:1, s:1, b:0), 
% 130.33/130.74  x  [109, 0]      (w:1, o:34, a:1, s:1, b:0).
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Starting Search:
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    4579
% 130.33/130.74  Kept:         2005
% 130.33/130.74  Inuse:        110
% 130.33/130.74  Deleted:      4
% 130.33/130.74  Deletedinuse: 2
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    9277
% 130.33/130.74  Kept:         4013
% 130.33/130.74  Inuse:        185
% 130.33/130.74  Deleted:      14
% 130.33/130.74  Deletedinuse: 5
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    13129
% 130.33/130.74  Kept:         6019
% 130.33/130.74  Inuse:        235
% 130.33/130.74  Deleted:      17
% 130.33/130.74  Deletedinuse: 5
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    18241
% 130.33/130.74  Kept:         8171
% 130.33/130.74  Inuse:        287
% 130.33/130.74  Deleted:      52
% 130.33/130.74  Deletedinuse: 38
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    24204
% 130.33/130.74  Kept:         10758
% 130.33/130.74  Inuse:        365
% 130.33/130.74  Deleted:      75
% 130.33/130.74  Deletedinuse: 59
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    27699
% 130.33/130.74  Kept:         12763
% 130.33/130.74  Inuse:        391
% 130.33/130.74  Deleted:      80
% 130.33/130.74  Deletedinuse: 64
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    31846
% 130.33/130.74  Kept:         15063
% 130.33/130.74  Inuse:        430
% 130.33/130.74  Deleted:      81
% 130.33/130.74  Deletedinuse: 65
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    35377
% 130.33/130.74  Kept:         17081
% 130.33/130.74  Inuse:        459
% 130.33/130.74  Deleted:      81
% 130.33/130.74  Deletedinuse: 65
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    42251
% 130.33/130.74  Kept:         20275
% 130.33/130.74  Inuse:        465
% 130.33/130.74  Deleted:      81
% 130.33/130.74  Deletedinuse: 65
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying clauses:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    47644
% 130.33/130.74  Kept:         22361
% 130.33/130.74  Inuse:        480
% 130.33/130.74  Deleted:      2957
% 130.33/130.74  Deletedinuse: 66
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    53173
% 130.33/130.74  Kept:         24383
% 130.33/130.74  Inuse:        523
% 130.33/130.74  Deleted:      2957
% 130.33/130.74  Deletedinuse: 66
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    57058
% 130.33/130.74  Kept:         26402
% 130.33/130.74  Inuse:        568
% 130.33/130.74  Deleted:      2961
% 130.33/130.74  Deletedinuse: 70
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    63595
% 130.33/130.74  Kept:         28737
% 130.33/130.74  Inuse:        600
% 130.33/130.74  Deleted:      2965
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    70951
% 130.33/130.74  Kept:         30773
% 130.33/130.74  Inuse:        628
% 130.33/130.74  Deleted:      2965
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    76012
% 130.33/130.74  Kept:         32820
% 130.33/130.74  Inuse:        669
% 130.33/130.74  Deleted:      2965
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    81198
% 130.33/130.74  Kept:         34841
% 130.33/130.74  Inuse:        703
% 130.33/130.74  Deleted:      2965
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    86058
% 130.33/130.74  Kept:         36897
% 130.33/130.74  Inuse:        736
% 130.33/130.74  Deleted:      2966
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    91314
% 130.33/130.74  Kept:         39032
% 130.33/130.74  Inuse:        769
% 130.33/130.74  Deleted:      2966
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying inuse:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  Resimplifying clauses:
% 130.33/130.74  Done
% 130.33/130.74  
% 130.33/130.74  
% 130.33/130.74  Intermediate Status:
% 130.33/130.74  Generated:    97079
% 130.33/130.74  Kept:         41209
% 130.33/130.74  Inuse:        809
% 130.33/130.74  Deleted:      4630
% 130.33/130.74  Deletedinuse: 74
% 130.33/130.74  
% 130.33/130.74  ResimplifCputime limit exceeded (core dumped)
%------------------------------------------------------------------------------